
Faculty of Science, Technology and Communication

Deep Convolutional Neural Networks for
Camera Relocalization

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of Master in Information

and Computer Sciences

Author:

Maciej Marcin Żurad

Supervisor:

Prof. Dr.-Ing. Holger Voos

Reviewer:

Prof. Dr. Christoph Schommer

Advisor:

Dr. Miguel A. Olivares-Mendez

November 2017

Abstract

The rise of inexpensive image sensors has greatly transformed numerous indus-

tries; from mobile devices, through surveillance to robotics; opening doors for novel

application. However, processing images and retrieving valuable information from them

has proven to be an utterly difficult task for computers, leaving many problems un-

solved. An example of such problem is image-based localization, also known as camera

relocalization, which given an image answers the question ”Where am I?”. Until re-

cently, images were localized using content-based image retrieval (CBIR) systems based

on hand-crafted feature descriptors such as SIFT or ORB. However, they fail under

various circumstances and generally do not scale well with the spatial extent of the

environment we operate in.

The advent of Deep Learning and Convolutional Neural Networks (CNNs) has

disrupted the entire field of Computer Vision as they proved themselves successful on

many classical problems such as image classification and segmentation, human-pose

estimation and optical-flow prediction. The main advantage of CNNs is the ability

to learn appropriate features from the data by training the whole system end-to-end.

PoseNet, PlaNet and VidLoc are recent neural network models that aim to solve image-

based localization using regression or classification.

The motivation behind this thesis is to further investigate different approaches

for image-based localization. Similarly to PoseNet, we formulate the problem as pose

regression and further improve upon it by introducing quaternion algebra for proper

attitude representation. In addition, we combine two recently developed approaches:

(1) a multi-task loss function that learns the optimal weighting between position and

orientation regression tasks, (2) a CNN followed by a spatial LSTM network for better

structured feature correlation. Furthermore, we only finetune a small portion of the

pretrained CNN feature extractor. Lastly, we extend the problem to videos and employ

sequence-to-sequence regression model based on LSTMs. We evaluate the models on the

7Scenes dataset and introduce a new Airframe dataset, where localization is performed

with respect to an object that changes position and orientation in the environment.

We achieve at least competitive, but sometimes outperforming results, while re-

quiring considerably less computational power for training the models.

i

Abbreviations

ML Machine Learning

DL Deep Learning

NN Neural Network

FC Fully Connected Layer

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short Term Memory

GRU Gated Recurrent Unit

ROS Robot Operating System

GPU Graphics Processing Unit

DOF Degree Of Freedom

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

CBIR Content Based Image Retrieval

SfM Structure from Motion

ii

Introduction

Localization is a fundamental problem in robotics. It is often solved with a Global

Positioning System (GPS), which is not suitable for urban or indoor scenarios due to

satellite signal blockage or reflection. In so called GPS-denied environments, one must

use other sensors for localization such as LIDARs, depth and image sensors. LIDARs

are very expensive and often heavy, while depth sensors have short operational range.

Image senors, on the other hand, are inexpensive, lightweight and provide high resolution

images, but processing information from these sensors is a very challenging task.

Current state-of-the-art visual localization systems are based on hand-crafted

feature descriptors such as SIFT [1], SURF [2] and ORB [3]. These systems perform very

well in controlled environments, but are susceptible to varying illumination, different

weather conditions, dynamic objects such as people, animals or the opening and closing

of doors. This is due to the fact that these features fail to capture global context.

Moreover, they also do not scale well with the spatial extent of environment and usually

required massive amount of computational power, thus making it extremely difficult for

real-time processing on embedded devices, such as unmanned ground vehicles (UGVs),

unmanned aerial vehicles (UAVs) and virtual reality headsets.

In order to address these problems, we use deep learning to regress the full 6-DOF

pose directly from images without the need to hand-craft features. The goal of deep

learning is to learn a deep representation of the input space. Convolutional neural

networks (CNNs) are an example of deep learning applied to image processing. For

instance, images of an indoor environment can be decomposed into objects such as walls,

desks and chairs, which further decompose into polygons and textures. Eventually, the

basic concepts of this deep hierarchical representation are edges, corners and color blobs.

Deep also refers to the fact that the number of layers used in a neural network is large.

iii

Introduction iv

We base our work on previously developed methods such as PoseNet [4] and

VidLoc [5], as well as their further improvements published in [6–10]. The main contri-

butions of this thesis are:

(1) We propose quaternion algebra for proper computation of the orientation loss

based on quaternion angular error.

(2) We combine a multi-task loss function for learning optimal weighting between posi-

tion and orientation regression tasks [7] with spatial LSTM architecture developed

in [11].

(3) We introduce a new indoor dataset called Airframe containing approximately

19000 images of a reduced airframe model for learning localization with respect to

that airframe. The dataset contains 6 subsets, each with a different position and

orientation of the airframe model.

(4) We present a temporal GRU model for predicting 6-DOF poses from sequences of

images and combine it with the multi-task loss function from (2).

(5) We evaluate our models on Airframe and 7Scenes [12] datasets using 4 differ-

ent CNNs as base feature extractors: VGG16-Hybrid1365 , GoogLeNet-ImageNet ,

GoogLeNet-Places365 , InceptionResNetV2-ImageNet

The remainder of the thesis is organized in the following way. Chapter 1 gives

some necessary background on machine learning. In chapter 2, deep learning is described

in detail, starting from basic neural networks, through convolutional neural networks to

recurrent neural networks. Chapter 3 presents the proposed models for solving image-

based localization using pose regression. Finally, experiments using those models on

different datasets are described in chapter 4.

Contents

Abstract i

Introduction iii

1 Machine Learning 1

1.1 Overview . 1

1.2 Common pitfalls and best practices . 2

1.2.1 Interpretability . 3

1.2.2 No free lunch theorem . 3

1.2.3 Underfitting, overfitting and model’s capacity 3

1.2.4 Hyperparameter optimization and validation sets 5

1.2.5 Data leakage . 7

2 Deep Learning 8

2.1 Manifold hypothesis . 8

2.2 Neural Networks . 9

2.2.1 Perceptron . 9

2.2.2 Multilayer perceptron . 10

2.2.3 Backpropagation . 11

2.2.4 Activation functions . 13

2.2.5 Regularization . 14

2.2.6 Optimization for training neural networks 16

2.2.7 Weight Initialization . 21

2.3 Convolutional Neural Networks . 23

2.3.1 Overview . 24

2.3.2 Architectures . 27

2.3.3 Understanding and Visualizing CNNs 32

2.4 Recurrent Neural Networks . 35

2.4.1 Vanilla RNN . 37

2.4.2 Long-short Term Memory . 38

2.4.3 Variants on Long-short Term Memory 39

2.5 Transfer Learning . 40

3 Camera Relocalization using Deep Learning 42

3.1 Problem Statement . 42

3.1.1 Relocalization using Content-Based Image Retrieval system 43

3.1.2 Relocalization as Classification Problem 44

3.1.3 Relocalization as Regression Problem 44

v

Introduction vi

3.2 Related work . 45

3.3 Loss functions for Relocalization as Regression 46

3.3.1 Weighted loss . 46

3.3.2 Homoscedastic uncertainty based loss 47

3.3.3 Quaternion error loss . 48

3.4 Proposed Methods . 49

3.4.1 Regressor . 50

3.4.2 Spatial LSTM . 51

3.4.3 Temporal GRU . 53

4 Experiments 55

4.1 Datasets . 55

4.1.1 7Scenes . 55

4.1.2 Airframe . 57

4.2 Training methodology . 59

4.3 Results on 7Scenes dataset . 60

4.3.1 Summary . 62

4.4 Results on Airframe dataset . 64

4.4.1 Temporal-GRU comparison . 65

Conclusions 74

A. Error histograms 75

B. Detailed VGG16 architecture 75

List of Figures 86

List of Tables 87

Bibliography 88

Chapter 1

Machine Learning

Methods proposed in this thesis are categorized as deep learning, a subset of

machine learning. A solid understanding of machine learning fundamentals is crucial,

when it comes to designing efficient deep learning models. This chapter aims to provide

an overview of machine learning, its common pitfalls and best practices for designing

and training models.

1.1 Overview

Machine learning is a field of Computer Science that allows computers to learn

without explicitly programming them. The most widely quoted definition of machine

learning is given by Tom Mitchel [13].

Definition 1.1.1 (Machine Learning). A computer program is said to learn from ex-

perience E with respect to some class of tasks T and performance measure P if its

performance at tasks in T , as measured by P , improves with experience E

In case of image classification problem, experience E can be viewed as the act of

presenting the machine learning algorithm pairs of images and their corresponding labels

of objects present in each image. Task T is simply guessing which object is present in

a given image and performance measure P is the probability that the guessed object is

actually present in that image.

1

Chapter 1 Machine Learning 2

Designing an algorithm for these types of problems in a way we design algorithms

for classical problems, like sorting a list, is not feasible. This is because images of ob-

jects suffer from viewpoint and scale variation, deformation, occlusion and illumination

condition to name a few. Instead, a data-driven approach has to be leveraged, where an

algorithm (model) learns from looking at examples, hoping it will generalize well-enough

to maintain its accuracy even if it is presented with images it has never seen before.

Machine learning systems are commonly classified into two categories based on whether

learning feedback is given to the learning system.

• Supervised learning - the system is given a set of N training samples in form

of {(x(1),y(1)), . . . , (x(N),y(N))}, where each x(i) is a feature vector and y(i) its

corresponding label. Learning algorithm explores the hypothesis space G to find

a function g : X 7→ Y , where X is the input space (x(i) ∈ X) and Y is the output

space (y(i) ∈ Y). The function g is found using a scoring function f : X ×Y 7→ R,

such that g(x) = arg maxy f(x,y)

• Unsupervised learning - the system is given a set of N training samples in form

of {x1, . . . ,xN} and is asked to retrieve some latent structure of the data. This

is a much more challenging problem than supervised learning as the goal is not

clearly defined. Unsupervised learning is usually further divided into clustering

(k-means), anomaly detection (One-class SVMs) and latent-space analysis (VAEs

[14], GANs [15])

Supervised learning can also be divided into classification and regression. Classifi-

cation corresponds to a discrete output space Y , while regression allows for a continuous

space. Examples of classification include spam detection, scene recognition and face

detection. On the other hand, object localization, human pose estimation and speech

synthesis are instances of regression. This thesis focuses on camera relocalization from

monocular images, which is another example of supervised regression.

1.2 Common pitfalls and best practices

The field of machine learning has proven to be very successful across a number

of applications. From fraud detection systems [16], through recommender systems [17,

Chapter 1 Machine Learning 3

18] and applications in medicine [19] to classical problems in computer vision [20–22].

However, machine learning systems suffer from many pitfalls.

1.2.1 Interpretability

Interpretability is usually a concern, due to the black-box nature of machine

learning systems. The problem frequently arises when these systems are deployed in

production and report a significant decrease in performance. It is often difficult to give

an exact explanation why the system behaves in that manner. There is a lot of effort

in the machine learning research community to gain a better understanding about the

inner workings of these systems [23, 24]. In section 2.3.3, we explore various techniques

for understanding and visualizing Convolutional Networks.

1.2.2 No free lunch theorem

The famous no free lunch theorem for machine learning [25] states that every

classification algorithm has the same out-of-sample error rate, if we average it over all

possible data-generating distributions. It means, that there is no single machine learning

algorithm that is universally better than any other.

Fortunately, the theorem holds only if we average over all possible distributions.

In real-world applications, we make assumptions about the data generating distributions,

therefore we can design algorithms, which perform exceedingly well. It is important to

remember, that the goal of machine learning is not to pursue a universal algorithm,

but to understand what types of machine learning algorithms achieve great results with

data-generating distributions we care about.

1.2.3 Underfitting, overfitting and model’s capacity

The difference between machine learning and optimization is that the resulting

model has to perform well on both training and test datasets. These datasets must satisfy

the i.i.d. assumptions, meaning that the samples from each dataset are independent

from each other and that the training and test sets are identically distributed. A well

performing model will have a low training error and the gap between training (in-sample)

Chapter 1 Machine Learning 4

and test (out-of-sample) error will also be small. These two components are crucial in

machine learning and have a direct correspondence with underfitting and overfitting.

Overfitting takes places, when the gap between training and test error is sub-

stantial. It is often explained that an overfit model merely learned the training data

by heart in some convoluted way. On the other hand, underfitting occurs, when the

model struggles to obtain low training error. These two concepts are directly related to

model’s capacity and controlling it can help avoiding these two problems.

Model’s capacity is usually described as the ability to fit a set of functions. If

the capacity is too low, then the model cannot fit a function and therefore underfits. One

example of such scenario is if the training data represents some non-linear relationship,

but we are trying to learn it with a model whose hypothesis space H is a set of all linear

functions (e.g. linear regression). Furthermore, if the model’s capacity is too high, then

there is little chance for choosing a solution that generalizes well and the model overfits.

Figure 1.1 depicts a common relationship between capacity and error. The left-hand side

of the figure illustrates the underfitting zone, where the model capacity is too low. As

the capacity increases, the training error decreases, but the generalization gap increases.

Finding an optimal capacity (one that balances training and generalization error) is a

difficult task.

Figure 1.1: Relationship between model capacity and error rate [26, Figure 5.3]

Regularization is a technique that can prevent overfitting even if model’s ca-

pacity is too large. The learning algorithm can favor one solution from another, despite

both of them being eligible. The most widely used regularization is weight decay

described in section 2.2.5.

Chapter 1 Machine Learning 5

1.2.4 Hyperparameter optimization and validation sets

Nearly all machine learning algorithms have hyperparameters. These are pa-

rameters (knobs) that control the behavior of the learning algorithm, but are not mod-

ified or learned by the learning algorithm itself. A good setting of hyperparameters is

crucial to model’s performance, while a poor one can hinder the ability to learn. Hyper-

parameters require tuning, which is expensive as models usually take days or even weeks

to train. This process is often described as ”black-art”, as it requires expert experience,

involves unwritten rules of thumb, along with some brute-force search [27]. Some of the

best-practices [28] for performing hyperparameter search are:

• Random search over grid search. Grid search is the usual method for finding

hyperparameters. Given a finite set of possible values for each hyperparameter,

we make a Cartesian product of these sets and validate the performance on each

element. However, this approach suffers from curse of dimensionality as the number

of hyperparameters increases and often becomes infeasible. Moreover, in the case

where some hyperparameters are not as important as other, we effectively waste

computational time by trying these settings.

On the other hand, in random search, sampling from a joint distribution of all

hyperparameters is performed n times. Fig 1.2 illustrates an example why random

search is usually better than grid search. In both cases, 9 different hyperparameter

settings were examined. Grid search fails due to an unimportant hyperparameter,

which forces the other hyperparameter to be checked at only 3 different places

instead of 9, therefore increasing the chance to miss important regions.

Figure 1.2: Grid search vs random search [29, Figure 1]

Chapter 1 Machine Learning 6

• Choosing scale. Some hyperparameters such as learning rate and weight decay

(section 2.2.5, 2.2.6), should be searched on a log scale, meaning sampled from

c U(a,b), where c is the exponent, and a and b are the boundaries of the uniform

distribution. Other hyperparameter can be sampled from the uniform distribution

directly e.g. dropout.

• From coarse to fine. In reality, it is best to first search in a coarse range and

narrow down the range as best results turn up. Being careful with best values at

the boundaries is also important.

• Bayesian Optimization. There exists an entire area of research dedicated to

finding algorithms that traverse the space of hyperparameter more efficiently.

Spearmint [30] and SMAC [31] are examples, but it is still an active area of research

with many unsolved problems such as parallelization and meta-learning [32].

It is crucial to realize that we cannot tweak model’s hyperparameters and evaluate

the performance on test set. Doing so may lead to an overly optimistic generalization

error and if the model was to be deployed in production, there would be a significant

performance reduction. This is due to the fact, we effectively used test set as training set

and thus, overfitted the test set. In order to solve this problem, we need an additional set

called: validation set, which is obtained by splitting the training set into training and

validation sets. We can now tune the hyperparameters by evaluating the performance

on validation set and once we find the best setting, train on both validation and training

set and evaluate a single time on the test set.

When the training set is too small to afford splitting it, cross-validation is an

option. It splits the training set into k equal fold, uses k − 1 for training and 1 for

validation. This is done k times such that every single fold becomes the validation fold

and the rest is used for training. The performance is averaged over all fold selections.

In reality, people avoid using k-fold cross-validation as it increases computational time

by a factor of k. The ratio of training to validation split generally varies from 50% to

90%. However, it is safer to use a larger validation set if the number of hyperparameters

to tweak is large.

Chapter 1 Machine Learning 7

1.2.5 Data leakage

Data leakage is a serious problem in machine learning and is considered ”one of

the top ten data mining mistakes” [33, 34]. It takes place when external information

(not part of training set) is used to train the model and leads to overly optimistic or

invalid models. In practice, this is often unintentional, subtle and indirect, thus making

it very hard to detect. Some examples of data leakage are [35]: (1) leaking test data

into the training data, (2) leaking knowledge about future into the past, (3) addition of

data that is not given in model’s operational environment and (4) leaking ground truth

data into the test set.

Chapter 2

Deep Learning

Traditional machine learning algorithms such as decision trees [36], support vector

machines [37] and k-nearest neighbors methods accomplish good results on a wide range

of problems. However, they have failed on fundamental problems in Artificial Intelligence

(AI), including speech and vision. The reason behind their poor performance is due to

inherently high-dimensional structure of the data in which it becomes exponentially

more difficult to achieve generalization. This is known as curse of dimensionality.

The rise of deep learning was partially motivated by the lack of success in these

difficult AI problems, where humans excel well, but computers fall short. Deep learning

aims to solve this problem by focusing on representation learning. The goal is to allow

the learning algorithm construct a structure, where concepts are expressed in terms of

other simpler concepts. A primary example of this is CNN (short for Convolutional

Neural Network), where the bottom concepts in hierarchy describe edges and corners,

higher-order concepts can represent honeycomb or wheel-like structures and eventually

the top-level concepts might represent faces or animals. CNNs are explained in detail

in section 2.3.

2.1 Manifold hypothesis

When dealing with high-dimensional spaces Rn such as images or sound waves, one

might become pessimistic that the learning algorithm can actually learn functions where

samples are distributed across the entire space. However, manifold hypothesis states

8

Chapter 2 Deep Learning 9

that the data exists on low-dimensional manifold embedded in a high-dimensional space.

This assumption is at least partially correct for images, text and sound [26]. Figure 2.1

illustrates a learned manifold from MNIST dataset using Variational Auto Encoder

(VAE) [14]. It shows that hand-written characters lie on a 2-D manifold.

Figure 2.1: MNIST manifold [14, Figure 4]

2.2 Neural Networks

The field of Neural Networks, also called Artificial Neural Networks (ANNs) in

literature, has be influenced by the objective of modeling biological neural systems.

2.2.1 Perceptron

Perceptron is the simplest neural network, which consists of a single neuron. Fig-

ure 2.2 depicts a biological neuron on the left and its mathematical model on the right. A

neuron is a basic computational unit, which receives signals from its dendrites (inputs)

Chapter 2 Deep Learning 10

and generates an output signal ahead its axon. In a human brain with approximately

86 billion neurons, axons are connected to dendrites of other nearby neurons through

synapses. The mathematical model is an overly simplified model of a real neuron, in

which signals traveling along axons (xi) interact with the dendrites of nearby neurons.

This interaction is multiplicative and based on synaptic strength (wi), such that signal

entering the cell body from each axon is in form wixi. The signals are summed up and if

a threshold is reached, then the neuron fires a signal along its axon. In our mathematical

model, using the code rate interpretation, the firing rate represents the frequency at

which neuron fires and it is modeled using activation function f . The weights w are

parameters, which are obtained from training the perceptron.

(a) Biological neuron (b) Mathematical model

Figure 2.2: Comparison of biological and mathematical neurons

Definition 2.2.1 (Perceptron). Given n number of inputs in vector form x = (x1, x2, . . . , xn) ∈

R, weights w = (w1, w2, . . . , wn) ∈ R, bias b ∈ R and an activation function f . Percep-

tron is a function g : Rn 7→ R, such that:

g(x) = f(
∑

wixi + b) (2.1)

2.2.2 Multilayer perceptron

Multilayer perceptron (MLP) is a generalization of a perceptron, where multiple

neurons are combined together to form layers and those layers are stacked on top of

each other. Figure 2.3 shows a multilayer perceptron with 2 hidden layers. The input

layer does not perform any processing and simply forwards signals to the first hidden

layer. Each neuron’s output signal is forwarded to each neuron in the next layer. It is

important to notice, that hidden layers cannot have linear activation functions, because

it does not increase model’s capacity. Missing connection between two neurons can be

Chapter 2 Deep Learning 11

simply modeled with a weight w = 0. Layer computation can be represented as matrix-

vector product (Wlx) followed by an element-wise application of activation function.

This operation is very fast and can be easily computed on a GPU, which is why deep

learning has seen such a rapid expansion. Layers inside a MLP are often called fully-

connected layers (FC) or dense layers.

Multilayer perceptrons (with at least 1 hidden layer) are universal function

approximators, meaning that for any continuous function f(x) on compact subsets of

x ∈ Rn and some ε > 0, there exist a function g(x) such that: ∀x, ‖f(x) − g(x)‖ < ε,

regardless of the choice of non-linear activation function [38]. This signifies that a simple

MLP can, in theory, learn any function given appropriate parameters, but usually 2 or

3-layer networks are utilized as learning becomes easier.

Figure 2.3: Multilayer perceptron with 2 hidden layers

2.2.3 Backpropagation

Backpropagation is the most common technique for training neural networks.

The analogy behind backpropagation is that of blindfolded hiker, who wants to reach

the bottom of the valley. However, the valley is high-dimensional and at any given time

the hiker can only feel, underneath his feet, the steepness of the slope in all directions.

He has to be careful not to take too short steps as it will take him long to reach the

bottom and not too long steps as he might overstep and miss an important path.

Chapter 2 Deep Learning 12

Formally backpropagation is defined as follows. Given the input training data

{x(1),x(2), . . . ,x(N)} with its corresponding ground truth labels {y(1),y(2), . . . ,y(N)},

we want to obtain the output of the network (forward pass), such that: ŷ(i) = f(x(i);θ)

where f is the function computed by the network using model parameters θ. After-

wards, we compute the error between the predicted output and the ground truth data

and finally backpropagate this error through the network to improve the parameters

(backward pass). The error function L(ŷ,y), where ŷ is the predicted output and y is

the ground truth, is called loss function in literature and is problem specific. Classifi-

cation problems frequently use cross-entropy function, while regression problems adopt

mean-squared error (L2) or mean-absolute error (L1).

Backpropagation of the error involves computing gradients of the loss function

with respect to each model parameter, ∇θL(ŷ(i),y(i)). In order to obtain these partial

derivatives, recursive application of the chain-rule 1 is employed [28]. Once the gradients

are retrieved, the update step is performed:

θt+1 = θt −
α

N

N∑
i=1

∇θtL(ŷ(i),y(i)) (2.2)

where θt are all parameters of the network at iteration t and α is the learning

rate. It considers all samples from the training dataset, which can be computationally

expensive as present datasets tend to have millions of samples. Equation 2.2 is the

simplest update, known as vanilla update, which moves the parameters closer to a local

minima of the loss function, decreasing the training error and consequently test error.

In order to train the network, we have to repeat this step until some stopping criterion.

In section 2.2.6, we describe a general algorithm for training neural networks as well as

more sophisticated update rules that yield far superior performance.

It is important to remember, that all operations inside neural network have to be

fully-differentiable for backpropagation to make sense. In addition, deriving the gradient

formulas for network can be tedious and error-prone. Fortunately, there exist multiple

libraries, which can do it automatically by inferring them from the computational graph

[39–42].

1In practice neural networks are represented as computational graphs, where nodes denote operations
and edges data flowing through it. Therefore, the chain-rule (∂f

∂g
= ∂f

∂h
∂h
∂g

) makes it easy to compute
gradients of the output w.r.t to any parameter contained in the nodes of the graph.

Chapter 2 Deep Learning 13

2.2.4 Activation functions

Activation functions provide non-linearity to the model, which gives it to power

to express complex functions. They all must take a single number and perform a fixed

(differentiable) mathematical operation. Different activation functions illustrated in

figure 2.4 have been proposed over the years:

Figure 2.4: 4 different activation functions: sigmoid, tanh, ReLu and Leaky ReLU

• Sigmoid is an old activation function defined as, σ(x) = 1
1+e−x , which squashes

values into range between 0 and 1. Large negative numbers become 0 and large

positive numbers become 1. It was widely used, because of its firing neuron in-

terpretation, where 0 stands for not firing at all and 1 is assumed as maximum

frequency. However, it has two considerable disadvantages:

– saturation - the output of sigmoid saturates at both tails (0 or 1) causing the

gradient to be almost zero. In this case, the local gradient will effectively kill

the gradient flowing through that neuron and block the error signal from going

further back. This is widely known as the vanishing gradient problem [43].

Chapter 2 Deep Learning 14

– output is not zero-centered - sigmoid activation will produce only positive

values, making the gradient of weights w all positive or all negative, thus

prohibiting from increasing one weight and decreasing another in the same

neuron. This will produce zig-zagging dynamics in the weight updates. Nev-

ertheless, in practice gradient is computed over a batch of data, where variable

signs can appear, making it less of a problem than saturated activation. [28]

• Hyperbolic tangent (tanh) is a slight improvement over sigmoid function as

the values are now zero-centered. It can actually be defined in terms of sigmoid:

tanh(x) = 2σ(2x)− 1. However, it still suffers from the saturation problem.

• Rectified linear unit (ReLU) computes function f(x) = max(x, 0), which is a

very inexpensive operation to perform compared to other activation functions. It

was shown by Krizhevsky et al [20] to give 6x speed-up in convergence. One big

drawback ReLUs have is called ”dying ReLU” problem, where large gradients can

inadvertently cause neurons to only produce zeros and never activate again. This

can be mitigated by carefully setting the learning rate.

• Leaky ReLU attempts to fix the ”dying ReLU” problem by making the function

have a small negative slope for x < 0 (see figure 2.4). However, this approach and

other complex activation functions are still a very active area of research and the

results are not always consistent [44].

2.2.5 Regularization

As mentioned in section 1.2.3, regularization is an important concept of controlling

model’s capacity in order to reduce chance of overfitting. Possibly the most widely used

method of regularization is weight decay of which there exist two types:

• L2 regularization is achieved by penalizing the square magnitude of all parame-

ters directly in the loss function. Term 1
2λw

2 is added for each parameter w, where

λ is the regularization strength hyperparameter. The factor 1
2 appears, because the

gradient of the penalizing term becomes λw instead of 2λw. The intuition behind

this method is that diffused weight matrices are preferred over sparse, encouraging

the network to use all of its input instead of focusing on a small subset.

Chapter 2 Deep Learning 15

• L1 regularization follows the same methodology as L2 regularization, but dif-

fers in penalizing term, which turns into λ‖w‖. This technique affects weights

differently compared to L2 regularization, because it leads to very small weights,

essentially performing feature selection and ignoring noisy inputs. In practice, L1

performance is usually inferior to L2.

One of the most important regularization techniques that has been recently de-

veloped is certainly dropout [45]. It is a surprisingly simple method that complements

weight decay. During training phase at each iteration randomly selected neurons are

dropped along with their connections. The hyperparameter p is the probability, whether

a neuron should be kept. Dropping a neuron simply means that we set it to zero.

Figure 2.5: Dropout applied to a 2-layer multilayer perceptron [45, Figure 1]

Figure 2.5 depicts an example of a 2-layer MLP with and without dropout. The

right-hand side of the figure shows that a dropout may be interpreted as sampling a

smaller neural network from the full neural network, where merely parameters of the

sampled network are updated. During test-time dropout is not applied, but instead

layers where dropout was applied have to be scaled by p in order to have the same outputs

in expectation. Moreover, at test-time all neurons are active, effectively performing an

average over all sampled networks and form a model ensemble. Finally, dropout prevents

overfitting by forcing the network to learn multiple independent representations and

decreases co-adaptation of neurons.

Chapter 2 Deep Learning 16

2.2.6 Optimization for training neural networks

In section 2.2.3, we described a general backpropagation method, where the up-

date step (equation 2.2) used the full training dataset, commonly referred to as gradient

descent (GD). In practice, datasets are too large to use this method. Hence, a common

approach is to compute the gradient only over a randomly selected batch of training

data. These methods are called stochastic gradient descent (SGD) or mini-batch

gradient descent (MGD) in literature. There are multiple advantages resulting from

the use of such stochastic approximation [46]:

• faster convergence - gradient descent has to examine the entire training dataset

to update parameters θ a single time, while stochastic gradient descent can make

progress much more often.

• escaping local minimum - gradient descent will always converge to a local

minimum of the loss function. On the other hand, each step in SGD will be a

noisy estimate of GD, allowing it to escape these situations.

Algorithm 1 Stochastic Gradient Descent

Require: Training dataset T = {(x(1),y(1)), (x(2),y(2)), . . . , (x(N),y(N))}
Require: Neural network as function f(x;θt) with θ0 as initial parameters
Require: Loss function L(x,y)
Require: Learning rate α and batch-size m

1: t⇐ 1
2: while stopping criterion not met do
3: Shuffle T
4: i⇐ 1
5: while i ≤ N do
6: Compute network output for j = i, . . . ,max(i+m− 1, N): ŷ(j) = f(x(j);θt)
7: Compute gradient estimate: ĝ ⇐ 1

m

∑j ∇θtL(ŷ(j),y(j))
8: Update network parameters: θt ⇐ θt−1 − αĝ
9: t⇐ t+ 1

10: i⇐ i+m
11: end while
12: end while

Algorithm 1 shows standard operation of SGD. Given a training set T with N

samples, initial network parameters θ0, learning rate α and batch-size m, we shuffle

the dataset and yield batches used to update the network parameters (weights) using

backpropagation. Lines (5-11) describe an epoch, during which the network sees the

entire training data once. The stopping criterion from line (2) is usually number of

Chapter 2 Deep Learning 17

epochs, or sometimes a technique called early stopping2. The algorithm does not

specify how the parameters should be initialized, which is an important problem and

also an active area of research. We describe weight initialization in detail in section

2.2.7. Lastly, line (8) shows the update step with static learning rate α. There is an

abundance of update schemes with their respective advantages and disadvantages. They

can be classified into two main categories: global methods, i.e. those that manipulate

learning rate globally and adaptive methods, which manipulate learning rate in per-

parameter fashion.

SGD with momentum is an example of a global method and an improvement

over vanilla SGD update rule, which almost always results in faster and better conver-

gence [47]. The idea is to look at the optimization from physics perspective, where we

are simulating a particle roll on the landscape. In vanilla SGD, the gradient directly

influences the position of this particle, but in momentum approach the gradient directly

influences the velocity of the particle, which then acts on its position. The momentum

update formula is the following:

vt = µvt−1 − αĝ

θt = θt−1 + vt

(2.3)

In equation 2.3, µ is a hyperparameter, usually ranging from 0.5 to 0.99, which

is a damping factor. In cases, where the slope of the landscape is very steep and the

particle starts oscillating around a local minimum, the damping factor acts a friction

coefficient, thus making it gradually lose its kinetic energy and converge. On the other

hand, if the landscape is very shallow in a given direction, then velocity vt gets built up

allowing it to converge faster along those shallow dimensions.

Figure 2.6: SGD with Momentum and NAG

2Early stopping is another form of regularization, which avoids overfitting by monitoring general-
ization error during training and stopping the training phase when the model starts overfitting.

Chapter 2 Deep Learning 18

Nesterov Accelerated Gradient (NAG) further improves upon SGD with

momentum and in practice works slightly better, while also benefiting from stronger

theoretical convergence guarantees [48]. The essence of this approach is to evaluate

the gradient at position, where term µvt−1 would take us, instead of evaluating it at the

current position. Figure 2.6 shows the difference between standard SGD with momentum

and NAG. Nesterov’s formula can be written as:

vt = µvt−1 − α∇f(θt−1 + µvt−1)

θt = θt−1 + vt

(2.4)

where for simplicity ∇f(θt−1 + µvt−1) refers to gradients of loss function on batch

of data w.r.t model parameters at the look-ahead step, θt−1 + µvt−1. However, it is

more desirable to express the gradient w.r.t. previous momentum update, which can be

achieved using variable transform, φt−1 = θt−1 + µvt−1. The modified NAG formula is

the following:

vt = µvt−1 − α∇f(φt−1)

φt = φt−1 − µvt−1 + (1 + µ)vt

(2.5)

All previously described global methods used static learning rate α throughout

the duration of the training phase. It is usually beneficial to anneal the learning

rate over time. The physics interpretation of this technique is that initially the system

contains too much kinetic energy and the particle (parameter vector) is unable to settle

down into deep and narrow ravines of the loss function. Knowing how to decrease the

learning rate can be a subtle task. If we reduce it too fast, then our system will cool down

rapidly before reaching its best possible position. Furthermore, reducing the learning

rate too slowly will cause the same problems as not reducing it at all. There are three

main methods of decaying the learning rate:

• step decay reduces the learning rate by a constant factor every few epochs. It

can be expressed with the following formula, where β is the decreasing factor, e

is the number of epochs between consecutive decays and α0 is the initial learning

rate:

α(t) = α0β
b tec (2.6)

Chapter 2 Deep Learning 19

• reduce on plateau, similarly to step decay, reduces the learning rate by a con-

stant factor, but only when a monitored value (validation loss or other accuracy

metric) stops improving.

• exponential decay is another form of learning rate decay, which can be described

using the following formula:

α(t) = α0e
−kt (2.7)

Thus far, we have shown only global methods for the update step. Those ap-

proaches act equally on every single parameter and require expensive finetuning of the

initial learning rate and decay hyperparameters. Adaptive methods are a solution to

this problem, where parameters are updated on per-parameter basis. Those methods

usually do not require as much expensive finetuning as they are well-behaved across a

wider range of hyperparameters. Some of the methods, which were empirically proven

to improve training are:

• AdaGrad (Adaptive Gradient) was one of the first per-parameter adaptive

methods originally developed in the convex optimization literature and ported over

to neural networks [49]. The core idea is to adapt learning rate to each parameter,

such that parameters receiving small gradients will have their effective learning

rate increases and conversely parameters receiving high gradients will have their

effective learning rate decreased. Equation 2.8 shows the formulation of AdaGrad,

where c is the cache of accumulated gradients over time, ĝ � ĝ is an element-

wise multiplication and the division in second line is also performed element-wise.

Lastly, the ε (usually 1e− 8) is added to each element of the square-root of cache

in order to avoid dividing by zero.

ct = ct−1 + ĝ � ĝ

θt = θt−1 − α
ĝ

√
ct + ε

(2.8)

AdaGrad proved to be very successful [50] and robust for sparse data, such as

GloVe word embeddings [51]. However, the problem with it is that the cache c will

eventually get very large and the learning will stop as it acts as a decaying factor.

• RMSProp (short for Root Mean Square Propagation) tries to combat the problem

of AdaGrad stopping to early, by making the cache variable decay using a running

Chapter 2 Deep Learning 20

exponential average. Equation 2.9 shows the update step formula, where γ is the

decay rate (usually set to 0.9, 0.99 or 0.999). The first line computes the moving

average of the squared gradients, which prevents the learning rate from decreasing

aggressively.

ct = γct−1 + (1− γ)ĝ � ĝ

θt = θt−1 − α
ĝ

√
ct + ε

(2.9)

• Adam (stands for Adaptive Momentum Estimation [52]) is yet another improve-

ment of adaptive methods, which further builds upon RMSProp, by combining it

with momentum. Equation 2.10 shows the formula of Adam with bias correction.

The first line calculates the momentum update, expressed as an exponential mov-

ing average of gradients, while the second line is exactly the same as in RMSProp.

The third and fourth lines perform bias correction, which is needed for the first

few updates as m and v are both biased at 0 due to initialization. Finally, the

last line performs the actual update by taking both momentum m̂, which helps

stabilize the noisy gradient and scaling factor v̂, which makes sure that parameters

are updated individually as described in AdaGrad. Adam is the standard choice

in current literature as it enjoys the best results without the need of heavy fine-

tuning. Hyperparameters β1, β2 and ε are commonly initialized to 0.9, 0.999 and

1e− 8 respectively, while learning rate α requires some finetuning and is generally

problem specific.

mt = β1mt−1 + (1− β1)ĝ

vt = β2vt−1 + (1− β2)ĝ � ĝ

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

θt = θt−1 − α
m̂t√
v̂t + ε

(2.10)

All methods described thus far are first-order methods as they only require the first

derivative. There exist a whole subfield of neural network optimization using second-

order methods. Second-order methods lead to much faster convergence due to cur-

vature calculation and lack the need of hyperparameter tuning, e.g learning rate.. The

Chapter 2 Deep Learning 21

parameter update is a Newton’s method (2.12) derived from second-order Taylor expan-

sion (2.11):

L(θ) ≈ L(θ0) + (θ − θ0)ᵀ∇θL(θ0) +
1

2
(θ − θ0)ᵀH(θ − θ0)ᵀ (2.11)

θ∗ = θ −H−1∇θL(θ0) (2.12)

The main drawback of second-order methods is the need to compute the inverse Hessian

matrix H−1. It becomes intractable as the network can easily have more than a million

parameters, since the complexity to compute it is O(n3). The most popular method is

called BFGS [53], which is a quasi-newton method and only approximates the inverse

Hessian with time complexity O(n2). However, BFGS still suffers from high space com-

plexity as its often impossible to even store the Hessian matrix in memory. L-BFGS

[54] counters this by not forming and storing the full inverse Hessian. Another problem

of second-order methods is the fact that they work very well in full batch, where each

update has to scan through an entire training set, but they fail to work in mini-batch

setting. Currently, applying L-BFGS in stochastic mini-batch setting is an active area

of research. Lastly, L-BFGS has found its application in style transfer, which combines

content of an image with a style of another image using CNNs [55, 56].

2.2.7 Weight Initialization

Proper parameter (weight) initialization is a crucial aspect of training neural

networks. For instance, if the network was initialized with zeros only, then all neurons

in each layer would output the same value and gradient, leading to the same parameter

updates and lack of asymmetry between neurons. Therefore, it is important to initialize

parameters according to some random distribution, thus making the parameters unique

at the beginning of training. One way of achieving this is through drawing parameters

from standard uniform distribution scaled by some small factor. In case of deep neural

networks, this approach can lead to vanishing gradient problem, where gradient signal

falls to 0.

Main problem with randomly initializing weights is that the variance of the output

at a given layer grows proportionally with the number of inputs. We can force the

neurons to have output with unit variance by scaling the standard uniform distribution

Chapter 2 Deep Learning 22

by 1√
n

. The derivation is the following; if we consider output of a single neuron y before

activation function: y =
∑n

i=1wixi, then we can write its variance as:

Var[y] = Var[
n∑
i=1

wixi] =
n∑
i=1

Var[wixi]

=
n∑
i=1

[IE[wi]]
2Var[xi] +

n∑
i=1

[IE[xi]]
2Var[wi] + Var[xi]Var[wi]

=
n∑
i=1

Var[wi]Var[xi] = (nVar[w])Var[x]

(2.13)

The first two steps of derivation 2.13 make use of variance properties. The third step

assumes that inputs and weights are zero-centered, which will be the case if activations

are linear or tanh, but ReLU units would have positive mean. Finally, the forth step

assumes that all wi and xi are identically distributed. We can see that in order to make

Var[y] = Var[x], we have to have Var[w] = 1
n . Therefore, if we sample w from unit

Gaussian distribution and scale it by 1√
n

, we get the desired variance, since Var[aX] =

a2Var[X].

A more detailed analysis carried out by Glorot et al. in [57] led to common

initialization scheme called Xavier Initialization. It shows that instead of scaling

by 1√
n

, we should scale by
√

2
nin+nout

, where nin and nout are number of inputs and

outputs respectively of a given layer. However, for layers with ReLU activations there

exists another initialization scheme called He Initialization, where we scale by
√

2
n ,

which gives better results and is currently recommended [44].

Batch Normalization is technique that alleviates most of the problems that

come with bad weight initialization [58]. The idea is to force activation layers receive

a unit gaussian throughout the network. It is possible, because normalization is a

differentiable operation. Equation 2.14 shows the formulas for calculating output of

the batch normalization layer. x̂i is the normalized batch and yi is the actual output

of the batch norm layer, where γ and β are learnable parameters. The output yi is

scaled and shifted, because the activation functions might prefer the input to moved

and scaled. It is important to notice, that the network has the capacity of learning the

identity function and thus omit the batch normalization if it learns γ =
√
V ar[x] and

β = IE[x]. Batch normalization not only is robust to weight initialization, but also allows

Chapter 2 Deep Learning 23

for higher learning rates and improves the gradient flow throughout the network leading

to improved results on common problems [59].

µB =
1

m

m∑
i=1

xi

σ2B =
1

m

m∑
i=1

(xi − µB)2

x̂i =
xi − µB√
σ2B + ε

yi = γx̂i + β

(2.14)

2.3 Convolutional Neural Networks

Convolutional Neural Networks have been originally developed by Yann LeCun

at al. [60] in 1998. However, they remained relatively untouched until 2012, when Alex

Krizhevsky at al. famously won the 2012 ILSVRC (ImageNet challenge [61]) using a

convolutional neural network called AlexNet [20]. Ever since, CNNs have be success-

fully applied to a variety of classic computer vision problems completely disrupting the

field [62–67].

The Multilayer perceptrons (MLPs) described thus far operate on N dimensional

input vectors. However, for data which has a known grid-like topology, such as images

or time-series data with samples taken at regular intervals, these types of network do not

yield satisfying performance. Regular networks, which only have fully-connected layers

(section 2.2.2) do not scale well to images. The reason behind it is that even a small

image of size 32×32×3 (such as those from CIFAR-10 dataset [68]) has effectively 3072

dimensions. Certainly, we would like to use images with higher resolution, but fully-

connected layers with such input would quickly become intractable. This is the case,

because the number of parameters in a fully-connected layer is nin ∗nout, where nin and

nout are the input and output dimensions respectively. For instance, if an MLP with one

hidden layer that has the number of units equal to the dimensionality of the input and

outputs a single value was used to process a 200×200 RGB image, then it would require

(200× 200× 3)2 + (200× 200× 3) = 1.44 ∗ 1010 parameters, which translates to 57.6GB

of required memory. Additionally, pixel spatiality is extremely important in images,

for instance; pixels in a neighborhood will not differ much from each other. However,

Chapter 2 Deep Learning 24

regular networks do not take advantage of the topological structure of images, because

they have to be flattened before processing, thus losing their topological structure.

This section focuses on giving a brief overview of convolutional neural networks

(2.3.1), current state-of-the-art architectures (2.3.2) and visualization and understanding

of CNNs (2.3.3).

2.3.1 Overview

Regular neural networks process information encoded as vectors. On the other

hand, convolutional neural networks (CNNs) take advantage of the grid-like structure

of images and the information flowing through the network is represented using tensors,

which are generalization of multi-dimensional arrays. A scalar value is a tensor with rank

0, while vectors and matrices are tensors with ranks 1 and 2 respectively. Many real-

world objects can be represented as tensors, for example: RGB images with resolution

Height×Weight× 3 are tensors with rank 3, videos composed of N frames have rank

4, where the tensor dimensions are: N ×Height×Weight×3. Likewise, waveforms can

be represented with rank 2 tensors of N ×K dimensionality, where N is the number of

samples and K is the dimensions of feature vector describing a single sample.

The name, convolutional neural networks suggests that those networks employ

mathematical operation of convolution. This operation is linear and also fully differ-

entiable, therefore can be used when training neural networks using backpropagation

(2.2.3). Convolution of a 2D array such as a gray-scale image I and a 2D filter F is

defined as following:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.15)

Convolution is applied at every location (i, j) of the input array and produces an output

with smaller size, but padding can be applied in order to maintain the same size. Mo-

tivation behind applying convolutions in neural networks is, as previously argued, that

individual pixels are not independent from the pixels surrounding it. Furthermore, fea-

tures present in an image, such as edges and corners are independent from its location.

Convolution measures the amount of known signal (filter F) present in an image I. We

now describe the building blocks of convolutional neural networks.

Chapter 2 Deep Learning 25

Convolution Layers, sometimes referred to as Conv Layers, are the essence of

every CNN. They operate on input tensors of dimensionality x × y × d. Each Conv

Layer consists of n filters, where each filter has size xf × yf × d, such that x ≥ xf

and y ≥ yf . Filters are convolved over the input at different spatial locations. The

distance between these locations is defined by two hyperparameters sx and sy called

stride. If sx = sy = 1, then filters are applied at every single spatial location. Equation

2.15 describes the convolution operation for rank 2 tensors, however CNNs operate on

tensors with an additional dimension d. Therefore, we need to expand the convolution

to:

S(i, j, k) = (K ∗ I)(i, j, k) =

xf∑
m=1

yf∑
n=1

d∑
l=1

I(i−m, j − n, k − l)K(m,n, l) (2.16)

Equation 2.16 shows that convolution is essentially computing a dot product between

the sliding filter and the input tensor at those selected (according to stride) spatial

locations. We can notice, that the all filters have the depth dimension d same as the

input tensor, but this not the case for spatial dimensions x and y. Therefore, the output

of convolving the input with a single filter will have size xo × yo × 1, where xo < x and

yo < y. It is sometimes desirable not to reduce the spatial dimensions x and y. This

can be achieved by padding the input, usually with zeros, such that xo = x and yo = y.

xo =
x− xf + 2px

sx
+ 1 (2.17)

yo =
y − yf + 2py

sy
+ 1 (2.18)

Equations 2.17 and 2.18 show how calculate the output’s spatial dimensions xo, yo, where

px and py are the sizes of padding. It is important to notice, that we might select a stride

sx or sy producing an output dimension that is not an integer. In this case, we consider

such setting as invalid and do not allow it. Furthermore, if we solve the equations for

px and py, when x = xo and y = yo, we obtain:

px =
x(sx − 1)− sx + xf

2
(2.19)

py =
y(sy − 1)− sy + yf

2
(2.20)

From equations 2.19 and 2.20 we get the amount of padding required for maintaining

the spatial dimensions. Typically, CNNs use either; valid padding, where no padding

Chapter 2 Deep Learning 26

is applied or same padding, where enough padding is applied to maintain the spatial

dimensions. Lastly, convolutional layers use n filters, where each filter is used indepen-

dently producing xo×yo×1 and all outputs are concatenated along the depth dimension

forming final output of size xo × yo × n. Figure 2.7 depicts an example of a convolution

Figure 2.7: Example of a Convolution Layer applied on a RGB image

layer with sixty-four 8× 8× 3 filters, strides (sx, sy) = (2, 2) and valid padding applied

over 224 × 224 × 3 input, thus producing 109 × 109 × 64 output tensor. The number

of parameters in a convolution layer is (xf ∗ yf ∗ d + 1) ∗ n, where 1 is the bias term

added to every filter. Therefore a layer with configuration from figure 2.7 would have

64 ∗ (8 ∗ 8 ∗ 3 + 1) = 12352 parameters, which is a very small number compared to what

a fully-connected layer would need in order to produce output of the same size.

Pooling Layers are another building blocks of Convolutional Neural Networks.

Their goal is to reduce the spatial dimensionality of the tensor flowing through that layer.

This is achieved by applying a reduction operation in spatial neighborhood. Similarly to

Conv Layers, we slide a windows of size (wx, wy) with strides (sx, sy) through the input

tensor and perform a function that returns a single value. Usually, it is max or average

operation, naming the layers MaxPool and AvgPool respectively. All slices of the input

tensor along the depth dimension are treated independently from each other. Figure 2.8

illustrates an example of Pooling Layer applied to a 4×4×d tensor with a 2×2 pooling

size and (2, 2) strides producing a 2 × 2 × d tensor. More generally, the output of the

pooling layer is calculated using equations 2.21:

xo =
x− xw
sx

+ 1, yo =
y − yw
sy

+ 1 (2.21)

Chapter 2 Deep Learning 27

Figure 2.8: Example of a Pooling Layer [8, Figure 2.6]

2.3.2 Architectures

This section aims to explain common structure of Convolutional Neural Networks

as well shows current state-of-the-art architectures. Figure 2.9 illustrates a basic struc-

ture of a CNN. Convolution layers are always followed immediately by ReLU activation.

This is due to the fact that convolution is a linear operation, therefore stacking 2 con-

volution layers would be equal of having just one convolution layer. Those convolution

layers most often employ same padding in order not to decrease the spatial dimensions

too quickly. Multiple Convolution Layers with ReLU activation are stacked and followed

by a Pooling layer, which reduces the spatial dimensions. These blocks of Conv Layers

with Pooling are further stacked and form the core of a CNN, also known as a fea-

ture extractor. The understanding of what CNNs are computing is explained in detail

in section 2.3.3. Finally, the core is followed by a stack of fully-connected layers with

ReLU activations, while the last fully-connected layer commonly has linear activation.

This architecture was originally developed for classification problems such as ImageNet

challenge [61], but has since been proven to transfer to a variety of other problems

[4, 69, 70]

A common example of architecture that employs the linear structure illustrated

in 2.9 is VGG16. It was the runner-up in 2014 ImageNet challenge and showed the

importance of the depth of the network [71]. The network has a highly homogeneous

structure as it only uses Convolution Layers with filters of size 3× 3 and Pooling Layers

with 2 × 2 window size. One of the downsides of this model is the computational cost

Chapter 2 Deep Learning 28

Figure 2.9: Common architecture of a Convolutional Neural Network

it comes with. It requires approximately 93MB of memory for forward pass (test-time)

and twice that amount for backward pass (training-time). The model itself contains 138

million parameters, which translates to 552MB of storage required, thus rendering it

Chapter 2 Deep Learning 29

unusable for mobile devices. Figure 2.10 illustrates the architecture of VGG and shows

how the spatial and depth dimensions change as the image flows through the network.

Figure 2.10: Architecture of the VGG16 network [72, Slide 18]

GoogLeNet, also known as InceptionV1 is another interesting network architec-

ture developed by Szegedy et al. from Google in their famous paper Going deeper with

the convolutions [73] and further developed in [74, 75]. It has won the 2014 ILSVRC

challenge and introduced the so called, Inception Module, which is responsible for heavily

reducing the number of parameters. The model has only ∼ 6M parameters compared

to VGG16’s 138 million parameters but yields better accuracy. Figure 2.11 depicts the

Inception Module used in GoogLeNet, which does not follow the linear architecture as

shown in figure 2.3.2. Instead the input of the inception module branches out, where

each branch has a copy of the input tensor. We can notice the use of convolution layers

with filters of size 1 × 1, which were first investigated in [76]. In inception modules,

they are applied to reduce the depth dimension and add additional non-linearity, be-

fore expensive 3 × 3 and 5 × 5 convolutions. Lastly, the branches are merged together

along the depth dimension. Figure 2.12 illustrates the full architecture of GoogLeNet.

We can notice, that it has three outputs (also sometimes called heads) in order allow

better gradient flow through the network and combat the vanishing gradient problem.

Moreover, the model uses Local Response Normalization (LRN) layers, which were

introduced in [20] and have been found to improve generalization of the network. The

Chapter 2 Deep Learning 30

Figure 2.11: Inception Module used in GoogLeNet

layer is defined as follows; given an input tensor a with some spatial dimensions and

depth dimension d, each value ax,y,i at spatial location (x, y) and depth i is normalized

using the following formula:

ax,y,i ← ax,y,i

(
k + α

min(d−1,i+n
2
)∑

j=max(0,i−n
2
)

(ax,y,j)
2

)−β
(2.22)

where k, α, n and β are hyperparameters. GoogLeNet uses k = 1, α = 2 ∗ 10−5, n = 4

and β = 0.75.

ResNets, known as Residual Networks were developed by Kaiming He at al.

in [59] and recently further developed in [75, 77, 78]. They notably won the 2015

ImagetNet challenge surpassing human-level accuracy as well as all main tracks of the

COCO 2015 challenges involving object detection, localization and segmentation. The

core idea behind ResNets is that increasing the number of layers in a naive way does

not necessary increase the performance. ResNets are built using residual blocks, which

are sequences of convolutions that are bypassed with skip connections. This causes

the model to learn residual values in the convolution layers. Figure 2.14 illustrates an

Chapter 2 Deep Learning 31

Figure 2.12: GoogLeNet aka InceptionV1 with LRN layers

example of a residual block. We can notice that during backpropagation the gradient

flowing through the addition will be equally distributed to the convolution layer stack

and the skip connection. This is a very desirable property, because it allows the gradient

to skip even until the beginning of the network and solve the vanishing gradient problem.

Inception ResNets combine the residual blocks with Inception Modules to

further improve the performance [75]. Figure 2.14 depicts the architecture of Inception

ResNet V2 from Google, which achieves 3.07% top-5 error on the ImageNet dataset.

Chapter 2 Deep Learning 32

Figure 2.13: Basic residual block

Figure 2.14: Inception ResNet V2 [79, Figure 2]

2.3.3 Understanding and Visualizing CNNs

The most common criticism of Convolutional Neural Networks is that they lack

interpretability due to the their black-box nature. As a result, a variety of methods have

been developed over the years, leading to their better understanding and empirically

proving that they can learn a deep representation of the input space. In this section, we

discuss some of these approaches [80–88].

• First conv layers - The easiest way to get insight is to focus on the first Conv

Chapter 2 Deep Learning 33

Layer of a CNN. If the CNN was designed to process RGB images, then the depth

dimension of filters in the first layer will be 3. Therefore, we can simply visualize

those filters as images. The intuition is that convolution performs inner products

at each spatial location between the input and the filter, thus the output will be

the highest, when the filter perfectly matches with the area it covers, which is

equivalent to template matching. As a result, those filters will visualize what the

CNN looks for in a given image. Figure 2.15 illustrates the 96 filters from the first

Conv Layer present in AlexNet [20] architecture. We can see that the network has

effectively learned how to recognize edges of different size and angle, color blobs

and small texture patches. These filters are often called gabor-like filters.

Figure 2.15: 96 convolutional filters from AlexNet [20, Figure 3]

• Intermediate conv layers - Visualizing filters from intermediate layers is more

tricky, as those filters have now depth dimensions higher than 3. One solution is

to look at different slices along the depth dimension and visualize them as gray-

scale images. However, it usually does not give satisfying results as those filters are

applied to the output of the first conv layer. Another way is to visualize activations

of those intermediate filters as suggested by Yosinski et al. in [81]. In this case,

we can see how the activations change as different images are run through the

network. For instance, authors showed that a CNN trained on ImageNet dataset

had a neuron that lighted up when a face was present in an image, even though

the dataset did not contain any images explicitly labeled as face.

• Last layers - Similarity to first and intermediate layers of the CNN, last layers can

give us additional insight. For instance, in image classification task, last layers are

usually large fully-connected layers with a typical output dimensionality 1024, 2048

or 4096. It is difficult to understand those highly dimensional spaces, but as it

turns out, images from the same class are actually nearest-neighbors in that space

Chapter 2 Deep Learning 34

[20]. Moreover, we can reduce the dimensionality to a 2D or 3D space using t-SNE

algorithm [83]. Figure 2.16 depicts such embedding of the VGG16’s penultimate

layer output on 400 images from the ImageNet dataset.

Figure 2.16: VGG16’s penultimate layer visualization using t-SNE on 400 ImageNet
images [89, Figure 4]

• Occlusion experiment - Another way of probing the network trained for classi-

fication task was the experiment conducted by Zeiler and Fergus in [82]. Authors

showed what was particularly important to the network in correctly predicting

class scores by occluding parts of images and looking at the network output.

• Saliency maps show which part of the input image is the most important for

the network during prediction. The core idea is to compute gradient of network’s

output with respect to the input image: ∇If(I;θ), where f is the network with

parameters θ represented as a function and I is the input image. This formulation

is known as vanilla gradient was first introduced in [80] and further improved

in subsequent work [86–88]. Those methods are illustrated in figure 2.17 and

described below:

– Guided Backpropagation [86] improves vanilla gradient producing more

crisp images. The idea comes from the assumption that neurons are detectors

of particular image features and therefore, we are only interested in image fea-

tures detected by the neuron as opposed to not detected. This is implemented

Chapter 2 Deep Learning 35

by suppressing all negative gradients, meaning that all activation functions

have to be modified in the network, thus making it sometimes difficult to

implement.

– Integrated Gradients [87] is another improvement to vanilla gradient

method, that does not require any modification of the original network and

has strong theoretical justification. The integrated gradients method satisfies

multiple desired properties, such as sensitivity as opposed to guided back-

propagation. The formula for computing the integrated gradients applied to

images is the following:

IntegratedGrads(I) ::= I

∫ 1

α=0
∇If

(
αI;θ

)
dα (2.23)

where I is the input image, α is the scaling factor, and f(I,θ) is the network

with parameters θ represented as function. The method scales the original

input image by an average of multiple gradients of scaled images.

– SmoothGrad [88] helps further reduce noise in saliency maps by smoothing

the gradients with a Gaussian filter. This helps because gradients w.r.t image

may fluctuate sharply at small scales, which is partly true due to the use

of ReLUs as they are not continuously differentiable. We can compute the

smoothed saliency map with the following formula:

M̂(I) =
1

n

n∑
M(I +N (0, σ2)) (2.24)

where M(I) is the saliency map for an image I and n is the number of

samples. The authors suggest that n = 50 and σ = 0.2 ∗ (max(I)−min(I)).

Furthermore, we can see that this method can be combined with other saliency

map methods.

2.4 Recurrent Neural Networks

One major shortcoming of traditional neural networks (section 2.3 and 2.2) is their

lack of persistence. We as humans use past information to reason about present. For

instance, it would be impossible to say what is happening in a movie just by looking at a

Chapter 2 Deep Learning 36

Figure 2.17: Comparison of saliency map methods (modified figure based on [90])

single frame. Recurrent neural networks (RNNs) overcome this limitation by introducing

loops, which carry information between time-steps. Figure 2.18 illustrates a simple RNN,

where block A takes a fixed-sized input at a current time xt, fixed-sized output from the

previous time-step ht−1 and produces a new fixed-sized output at a current time-step

ht. The right-hand side of the figure shows the same network, but with an unrolled

loop by copying the network t times, which allows us to treat it as a traditional neural

network with a varying input and output sizes.

Figure 2.18: RNN and the same RNN with loops unrolled [91, Figure 2])

The ability to process information where input and output is not fixed is very

important. For instance, image captioning [92] is a task, where given an input image

we are asked to generate sequence of words (a sentence) describing that image, which

is an example of a One-to-Many model. Sentiment analysis [93], on the other hand,

is a Many-to-One model, because its task is to predict whether a given sentence has

positive or negative sentiment. Machine Translation [94, 95] is a task of translating

a sentence from one language to another and therefore can be expressed as a Many-

to-Many model. Finally, frame-by-frame image-based localization [5] is also a Many-

to-Many model. However, it differs from Machine Translation, because the model is

Chapter 2 Deep Learning 37

”synced”, meaning that output at time-step t is directly influenced (without a delay) by

the input at the same time-step3.

Figure 2.19: Unrolled RNN architectures for different model types [96, Figure 1])

Figure 2.19 illustrates the unrolled RNN architectures depending on the model type.

Red boxes indicate fixed-sized inputs, green boxes are hidden layers and blue boxes

show fixed-sized outputs. The rightward direction marks the time dimension and shows

the causality between elements of the sequence. RNNs are trained using a method called

Backpropagation Through Time (BPTT), where every element from the sequence is for-

warded through the network and consequently the loss is computed and backpropagated

for every output time-step. It is important to notice, that all copies of the network share

the same set of parameters. However, BPTT can sometimes be infeasible if the sequence

is very long, in this case Truncated BPTT (TBPTT) is employed. It divides the long

sequence into shorter sequences and runs BPTT on these short sequences, passing the

final state from the last time-step to the initial state of the first time-step.

The RNNs can be viewed as a fixed computer programs with some inputs and

internal variables. In fact, it was proven that RNNs are Turing-Complete [97], meaning

that for every computable function there exist a finite RNN. Recurrent neural networks

are also useful for processing information that does not seem to be sequential at a first

glance, such as images. For example, steering attention around an image to look for

important features can be viewed as a sequential task [98].

2.4.1 Vanilla RNN

The first RNNs had a very simple structure for combining the input at a current

time-step xt with the output of the previous time-step ht−1. The formulation of the

3time-step commonly refers to a position in sequence, e.g a word in a sequence or a frame in a video

Chapter 2 Deep Learning 38

so-called vanilla RNN is the following:

ht = tanh(Whhht−1 +Wxhxt + b) (2.25)

where Whh and Wxh are parameter matrices and b is the bias vector.

Learning dependencies is the main objective of RNNs. However, dependencies

can be long- or short-term. For short-term dependencies we only have to look into the

near past in order to correctly solve the problem. Long-term dependencies demand more

context. For example, predicting the last word from sentence: “I grew up in France . . .

I speak fluent French requires remembering facts that appear at the beginning of the

sentence. RNNs are, in theory, capable of dealing with arbitrarily long dependencies.

However, in practice vanilla RNNs struggle, when trained with gradient descent meth-

ods due to the vanishing and exploding gradient problems. Exploding gradient can be

mitigated by clipping the gradient. However, the vanishing gradient issue cannot be

solved easily. It was was studied in depth by Hochreiter [99] and Bengio et al. [100],

who showed fundamental reasons why that might be the case.

2.4.2 Long-short Term Memory

Long-short Term Memory (LSTM) is a type of RNN, which addresses the problem

of learning long-term dependencies. It was first introduced by Hochreiter in [101] and

designed to avoid the vanishing gradient problem, thus vastly improving the capability

to learn long-term dependencies.

Figure 2.20: Inner-workings of an LSTM block [91, Figure 6])

Similarly to a vanilla RNN architecture (figure 2.18), LSTMs have a block applied

at every time-step. This difference is that the block (usually called an LSTM cell) now

Chapter 2 Deep Learning 39

takes two states from the previous time-step: hidden state ht−1 and cell state ct−1.

Furthermore, the actual output from this LSTM block is also the hidden state this is

passed to the next block in the sequence. Figure 2.20 illustrates the inner-workings of

an LSTM block, where operations shown in circles are applied element-wise and yellow

rectangles represent fully-connected layers with sigmoid or tanh activations. Splitting

arrows correspond to a copy operation and connecting arrows depict concatenation. The

top horizontal line represents the flow of the cell state. We can notice, that this state

is only modified by element-wise addition and multiplication, which means that the

gradient will flow uninterruptedly throughout the entire sequence in a similar fashion

to residual networks. The cell state acts as a memory for a given LSTM block and is

manipulated by a set of gates. Forget gate (f) decides whether we erase information from

the cell, input gate (i) determines whether we write any information to the cell state and

finally output gate (o) tells us how much of the cell state is revealed. Mathematically, a

set of equations (2.26) describes the behavior of a single LSTM block at time t. Sigmoid

activation functions are used, because they squash input into [0, 1] range, which can then

effectively block or allow information. On the other hand, hyperbolic tangent (tanh)

activation squashes the input into [−1, 1] range allowing both positive and negative

values to be added to the cell state.

ft = σ(Wfxt +Ufht−1 + bf)

it = σ(Wixt +Uiht−1 + bi)

ot = σ(Woxt +Uoht−1 + bo)

ct = ft � ct−1 + it � tanh(Wcxt +Ucht−1 + bc)

ht = ot � tanh(ct)

(2.26)

2.4.3 Variants on Long-short Term Memory

LSTMs have been introduced quite a while ago, but only recently started getting trac-

tion. This has led researchers to investigate what is so special about the LSTM struc-

ture leading to creation of multiple variants. A popular variant introduced by Gers and

Schmidhuber in [102] is called LSTM with ”peephole connections”, which essentially

allows all internal fully-connected layers to access the cell state.

Chapter 2 Deep Learning 40

Gated Recurrent Unit (GRU) [94] is another more dramatic variation of an LSTM.

It combines the forget get with the input gate into a single update gate (z) and merges

the cell state with the hidden state. Figure 2.21 illustrates the inner-workings of a GRU

block. GRUs have less parameters, leading to faster training and usually require less

data. However, all trade-offs between LSTMs and GRUs have not been fully explored

[103]. Finally, Jozefowicz et al. explored the space of various LSTM architectures and

found a specific structure that outperformed both LSTMs and GRUs, but only on specific

problems. They also showed that adding a bias of 1 to the forget gate of LSTM closes

the gap between LSTMs and GRUs.

Figure 2.21: Inner structure of a GRU block [91, Figure 16])

2.5 Transfer Learning

Training CNNs from scratch takes a great amount of time and requires extremely

large datasets. For example, training network architectures described in section 2.3.2

can take 2-3 weeks on multiple high-end GPUs. Therefore, in practice only a few people

train CNNs from scratch. However, CNNs have proven to be great at extracting features,

which can then transfer across a variety of different computer vision tasks [67, 69, 70].

Transfer learning refers to the use of pretrained CNNs: (1) as a fixed feature extractor

or (2) for finetuning (some) weights of the model.

In order to use CNNs as fixed feature extractors, we take a pretrained model

such as GoogLeNet trained on some dataset and discard the last fully-connected layers

responsible for image classification. We can now take a new small dataset, perform

forward pass and store the output to disk. For VGG16, this will give us a 512-D vector

Chapter 2 Deep Learning 41

for each image that can be viewed as a compact representation of the that image. We

can use those CNN features as a base for solving different computer vision tasks, such as

image captioning, video classification or human-pose estimation. It is crucial to notice

that a choice of the dataset used for pretraining the model matters and can greatly

improve or hinder the performance of the final model. If our small dataset differs a lot

from the initial dataset used for pretraining, then we might expect the performance to

be mediocre. Therefore, we should always strive for using models pretrained on datasets

as close as possible to our dataset.

It is often better to finetune the pretrained model than to simply use it as a feature

extractor. Finetuning consists of selecting some convolutional layers from the pretrained

model and freezing all the other layers. The frozen layers will not be updated during

training and the selected layers must be initialized to values from the pretrained model.

If the new dataset is large, then we might opt for finetuning larger portion of the CNN.

However, the first conv layers extract basic features such as edges or corners and those

transfer well between datasets, therefore finetuning the whole network is usually not

necessary. Moreover, if we decide to add any layers to the network, then it is generally

best to first freeze all layers except the new ones, train the network and then finetune

some conv layers. The reason is that newly added layers will be randomly initialized and

the gradient might completely wreck the pretrained conv layers if they are not frozen.

Chapter 3

Camera Relocalization using

Deep Learning

In this chapter, we formulate the problem of camera relocalization using deep

learning (section 3.1) and discuss the related work (section 3.2). Afterwards, we de-

scribe different loss functions used in our models (section 3.3) and introduce a novel loss

function based on quaternion algebra. Finally in section 3.4, we examine three neural

network architectures, that allow us to train the whole system in an end-to-end fashion.

3.1 Problem Statement

Camera relocalization task, also known as image-based localization task is defined

as the task of determining the location of a given image in an arbitrary coordinate frame.

In the simplest form, each RGB image x is processed independently in order to predict

a location y = f(x). In our case, the location is expressed as a 6-DOF pose, consisting

of position ypos ∈ R3 and orientation yrot ∈ SE(3). We also extend this task to a

sequences of n RGB images x(1),x(2), . . . ,x(n) taken at constant rate, where all images

from the sequence are localized jointly, y(1),y(2), . . . ,y(n) = f(x(1),x(2), . . . ,x(n)).

In this thesis, we consider an online localization system for applications in robotics,

mainly unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). How-

ever, the system can also be used for smart-phone localization, as present smart-phones

have excellent cameras and enough computational power for on-board processing. We

42

Chapter 3 Camera Relocalization using Deep Learning 43

focus on indoor environments, where localization is usually difficult due to the lack of

GPS signal, but our system can be easily extended to outdoor environments. Lastly,

localization takes place in a well-defined search area, such as a university campus.

There are three main approaches to localization using supervised learning. In this

setting, we are given a training dataset Xtrain that contains pairs of images and their cor-

responding locations in a given coordinate frame Xtrain = {(x(1),y(1)), . . . , (x(n),y(n))}.

We use this dataset to train a model denoted as function ŷ(i) = f(x(i);θ), where ŷ(i) is

the prediction for image x(i) and θ are the model parameters.

3.1.1 Relocalization using Content-Based Image Retrieval system

A common approach to camera relocalization task is through a Content-Based

Image Retrieval (CBIR) system. This method uses a model z = f(x) to transform an

input image x into a representation z ∈ Rn, called feature vector. The feature space is

often significantly less dimensional than the original input space and the feature vector

is usually obtained using SIFT [1], SURF [2] or ORB [3] feature extraction algorithms.

However, these algorithms use hand-crafted features, based on multiple assumptions

and therefore might not necessary perform well on images with large texture-less areas

such as close-up images of walls. Therefore, a machine learning based approach, which

learns the transformation might yield superior performance as the appropriate features

are learned from the data during training.

Once the images are transformed into the feature space, a reference database

composed of N pairs of feature vectors and their corresponding locations is required

in form {(z(1),y(1)), (z(2),y(2)), . . . , (z(N),y(N))}, where y(i) are locations of images as

described in section 3.1. Then given a query image I
′

and its feature vector z
′

we can

predict its location using nearest neighbor method:

z∗ = arg min
z

(‖z − z′‖) (3.1)

where z∗ is the closest image to the query image in the feature space. The actual

prediction ŷ′ can be then retrieved by association from the reference database.

Chapter 3 Camera Relocalization using Deep Learning 44

3.1.2 Relocalization as Classification Problem

Positions and orientations are continuous in real-world. However, if we divide the

search area into a set of N non-overlapping blocks, then we can convert the task into

a classification problem with N different classes corresponding to different locations.

The downside of this approach is that the maximum prediction accuracy will be limited

to the size of the dividing block. Moreover, orientation and altitude are usually not

considered in this approach as they increase the number of possible classes thus making

it very difficult to train.

A common classification model f : x 7→ RN takes an input image x and computes

a class score vector s ∈ RN , whereN is the number of classes. The class scores are usually

interpreted as unnormalized log probabilities, thus a softmax function can convert the

class score vector into a discrete probability distribution over the classes, where the

predicted class is the one with the highest probability: ŷ = arg maxi(si) . The model is

trained end-to-end using a cross-entropy loss function, defined as:

L(θ) = − log

(
esy∑
j e
sj

)
(3.2)

where sj is the jth element of the class score vector, sy is therefore the element of

the class score that corresponds to the correct class for that image. The advantage of

classification is that we automatically get the confidence value for each location. PlaNet

[104] is an example of performing image-based localization using classification on a global

scale, where authors divided earth’s surface and used CNN to predict class scores. They

also extended the problem to a sequence of images and improved the accuracy using

LSTMs.

3.1.3 Relocalization as Regression Problem

As described in section 1.1, regression problems refer to problems where the

prediction lies in continuous space. Localization is an example of such problem, where

the goal is to predict a tuple y = (ypos,yrot) composed of position ypos ∈ R3 and

orientation yrot ∈ SO(3), commonly referred to as 6DOF pose. It is important to predict

position and orientation at the same time, because two images taken at the same position

but facing different directions can vastly differ. Similarly to classification problem, the

Chapter 3 Camera Relocalization using Deep Learning 45

model can be trained in an end-to-end fashion, where locations are predicted directly

from images without the need to hand-craft features. The choice of the loss function

is more complicated than in the case of classification and section 3.3 describes different

loss functions designed for this problem.

The main advantage of viewing localization as a regression over classification is

that regression can produce arbitrarily fine grained predictions, while classification is

bounded by the size of the block dividing the search space [4]. However, the downside is

that regression in the simple form cannot provide uncertainty measures for predictions,

which are crucial for many applications such as robotics. However, there exist models,

which can predict multiple poses from a single image. The uncertainty measure can be

then computed from the variance of these poses. The downside of this approach is the

additional computational cost of performing forward pass multiple times [6].

3.2 Related work

There are multiple approaches to image-based localization aside from those de-

scribed in the section above. For example, map-matching methods use a map of

the environment in form of navigable paths or floor-plans consisting of traversable and

non-traversable areas. They rely on strict data-association and use interoceptive and ex-

teroceptive sensors in order to retrieve a global pose estimate usually through sequential

Monte Carlo filtering [105] or Hidden Markov Models [106]. These methods also process

sequential observations similar to one of our proposed methods, but often yield inferior

performance compared to localization methods based on 3D maps of sparse features.

Localization methods based on 3D maps of sparse features, often called sparse

feature based localization, require a 3D model of discriminative features usually

obtained from a Structure-from-Motion (SfM) pipeline. Prediction of query images is

then obtained using camera re-sectioning, which requires matching against very large

3D models. This process is very computationally expensive and needs a lot of memory

for the map, which often prevents it from being implemented on resource-constrained

platforms, such as aerial robots. Several methods have been proposed to combat this

issue. For example, in [107] authors introduce an active search method to efficiently find

reliable correspondences. In [108], Sattler et al. proposed a quantized vocabulary for

Chapter 3 Camera Relocalization using Deep Learning 46

direct 2D-to-3D matching, where the camera pose is searched using a combination of

RANSAC and a PnP algorithm.

Another interesting approach to image-based localization, which is closer to our

work was developed by Shotton et al. in [12]. The authors use regression forests to

learn the mapping of RGB-D pixels to 3D points in the scene’s world coordinate frame.

The correspondences are then fed to a RANSAC algorithm in order to produce a pose

prediction. The authors also extend the model and consider sequences of images with

the purpose of exploiting the temporal regularity present in image sequences. However,

the main problem with this approach is that it requires depth information, which is

usually not available.

Motivated by the recent advent of deep learning PoseNet [4] first tried directly

regressing poses from image pixels. Authors showed that while still far from competing

against traditional methods, they have managed to produce good results with a naive

loss function and without making any attempt at capturing the structure of the scene

or exploiting the temporal smoothness in image sequences. The general idea was further

explored in [5–7, 9–11] and is the main part of this thesis.

3.3 Loss functions for Relocalization as Regression

In this section, we describe various loss functions used for training regression

models for the camera relocalization task. In section 3.3.1 we show a naive multi-

task loss for regressing position and orientation simultaneously. Then in section 3.3.2,

we demonstrate an improved approach for dealing with multi-task loss that does not

require expensive hyperparameter tuning. Finally, in section 3.3.3 we introduce a novel

orientation loss function based on quaternion algebra.

3.3.1 Weighted loss

Learning position and orientation at the same time is crucial as described in

section 3.1.3. However, the set of possible positions is very different from the set of

possible orientations, since positions are in R3, while orientations are in SO(3). In order

to train a model to simultaneously predict both orientation and position, the position

Chapter 3 Camera Relocalization using Deep Learning 47

loss has to be combined with the orientation loss. This is achieved with a weighted loss

defined as:

L(I) = Lpos(I) + βLrot(I) (3.3)

where L(I) is the total loss of the position and orientation regression multi-task given

an input image I. Lpos(I) is the position loss function and Lrot(I) is the orientation loss

function, while β is the weighting hyperparameter that balances these two loss functions.

The total loss function can be further broken down into:

L(I,x, q;θ) = ‖x− x̂‖p + β

∥∥∥∥∥q − q̂

‖q̂‖

∥∥∥∥∥
p

(3.4)

where I is the input image with its corresponding ground-truth position x and orien-

tation q as a quaternion. θ are model parameters used to compute the position x̂ and

orientation q̂ predictions for the input image. The position loss function takes form of

a p-norm, where p is usually 1 or 2, thus making it an L1 or an L2 norm. On the other

hand, orientation loss function is also a p-norm, but the predicted quaternion is first

normalized to a unit quaternion, which represents a valid rotation in 3D space.

The main problem with this loss function is the need for expensive finetuning of

the β hyperparameter. The models are extremely sensitive to its choice and can yield

very good performance or are even unable to converge.

3.3.2 Homoscedastic uncertainty based loss

As discussed in section 3.3.1, the weighted multi-task loss function suffers from

the existence of the β hyperparameter. Ideally, we would like to develop a loss function,

which can learn the optimal choice of β from the data, thus removing the need for

expensive hyperparameter search. This can be achieved using homoscedastic uncertainty

also known as task-dependant uncertainty. It is an aleatoric uncertainty1 that does not

depend on the input data. Kendall and Cipolla showed in [7] how to use this uncertainty

in order to combine losses from different tasks in a probabilistic manner.

Lσ(I) = Lpos(I)σ̂−2pos + log σ̂2pos + Lrot(I)σ̂−2rot + log σ̂2rot (3.5)

1Aleatoric uncertainty describes the uncertainty with respect to information that cannot be explained
by our data. It can be reduced by increasing the precision of all observable variables.

Chapter 3 Camera Relocalization using Deep Learning 48

Equation 3.5 shows the position and orientation multi-task loss based on the objective of

minimizing the homoscedastic uncertainties, where position and orientation losses Lpos,

Lrot are the same as in section 3.3.1. σ̂pos and σ̂rot are the position and orientation

homoscedastic uncertainties. Moreover, they are trainable parameters (scalar values),

which are updated during backpropagation in the same manner as other model param-

eters. The terms, log σ̂2pos and log σ̂2rot are regularization terms in order to prevent the

network from learning infinite uncertainty and therefore zero loss. The homoscedastic

uncertainty for rotation is expected to be smaller than the uncertainty for position, since

quaternions are restricted to a unit manifold, whereas positions can have arbitrary large

errors. Finally, in order to improve numerical stability, we transform the equation 3.5

to:

Lσ(I) = Lpos(I) e−ŝpos + ŝpos + Lrot(I) e−ŝrot + ŝrot (3.6)

where ŝ← log σ̂2, which avoids a potential division by zero. Throughout the remainder

of this thesis, we refer to this loss function as Naive-Homoscedastic or NH.

3.3.3 Quaternion error loss

The orientation loss function defined in equation 3.4 assumes that the difference

between two quaternions can be computed using L1 or L2 loss. However, that is not the

case, as quaternions have their own algebra. Quaternion is defined as a collection of 4 real

numbers, such that q = [q0, q1, q2, q3], where q0 is the real part of the quaternion and qv =

[q1, q2, q3] is the vector part. A unit quaternion ‖q‖ = 1 represents a rotation in 3D space.

Moreover, quaternions are a double map of SO(3), particularly −q and q represent the

same orientation. A minus operation in SO(3) is defined as 	 : SO(3) × SO(3) 7→ R3.

It returns the vectorial difference θ ∈ R3 between two orientations in 3D space and is

expressed in the vector space tangent to the reference element [109]. If the rotations

chosen for calculating the difference are quaternions q̂ and q, then the difference is

defined as:

θ = log
(
q−1 ⊗ q̂

)
(3.7)

Chapter 3 Camera Relocalization using Deep Learning 49

where ⊗ is the quaternion product and q−1 is the inverse quaternion. A quaternion

product is defined as:

p = p⊗ q =

p0q0 − p1q1 − p2q2 − p3q3

p0q1 + p1q0 + p2q3 − p3q2

p0q2 − p1q3 + p2q0 + p3q1

p0q3 + p1q2 − p2q1 + p3q0

 (3.8)

and an inverse quaternion is equal to quaternion conjugate for unit quaternions:

q−1 =
q∗

‖q‖2
= q∗ = [q0,−q1,−q2,−q3] = [−q0, q1, q2, q3] (3.9)

As stated previously, quaternions represent the same rotations as their negative coun-

terparts, therefore it is more beneficial to only negate the real part q0 of a quaternion

in order to speed up computation. Finally, the logarithm of a quaternion is defined as:

log q = uθ = qv
arctan(‖qv‖, qw)

‖qv‖
≈ qv
qw

(
1− ‖qv‖

2

3q2w

)
≈ qv 7−−−→

θ 7→0
0 (3.10)

where u and θ are the axis-angle representation of q. We use the last approximation to

speed up the computation and avoid division by zero. Subsequently, we can now define

our orientation loss function based on quaternion algebra as:

Lrot(I) = ‖ log
(
q−1 ⊗ q̂

)
‖p (3.11)

We combine this loss function with the previously defined homoscedastic loss function

and for the remainder of the thesis, we refer to it as Quaternion-Error-Homoscedastic

or QEH.

3.4 Proposed Methods

In this section, we describe our proposed regression models for the camera relo-

calization task. In section 3.4.1, we show a simple regression model built on top of a

pretrained CNN. We then improve this model in section 3.4.2 by adding spatial LSTM

module as showed in [11]. Lastly, in section 3.4.3, we extend the camera relocalization

problem to sequence of images and exploit the temporal smoothness constraint to further

Chapter 3 Camera Relocalization using Deep Learning 50

improve the performance. All proposed models utilize transfer learning, as described in

section 2.5, where the base models are: (1) GoogLeNet pretrained on ImageNet [73], (2)

GoogLeNet pretrained on Places365 [110], (3) Inception ResNet V2 pretrained on Ima-

geNet [75] and (4) VGG16 pretrained on Hybrid1365 [110]. We explore the importance

of CNN architectures and the datasets used for training them as the base for camera

relocalization task.

3.4.1 Regressor

The Regressor model is based on PoseNet [4]. The output of the model is a

6-DOF pose prediction expressed as a tuple ŷ = (x̂, q̂), where x̂ ∈ R3 and q̂ ∈ R4. As

previously stated, we use transfer learning applied to 4 different CNN models. We apply

the following changes to these models:

• GoogLeNet - For the two models based on GoogLeNet architecture (ImageNet

and Places365) we discard the two auxiliary output branches as well as the fully

connected layers from the main branch. We also freeze all layers except the last

three inception modules. Given a 224 × 224 × 3 input image, the model now

produces a 1024D feature vector.

• Inception ResNet V2 - We remove the auxiliary branch as well as the full

connected layer from the main branch. Furthermore, we freeze all layer except the

last 10 inception resnet blocks as seen in figure 2.11. The new model now takes a

299× 299× 3 input image and produces a 1536D feature vector.

• VGG16 - We remove all fully connected layers, freeze all layers except the final

3 convolutional layers and add a Global Average Pooling layer [76] after the last

convolutional layer. The resulting model takes a 224 × 224 × 3 input image and

produces a 512D feature vector.

As state above, we freeze a considerable portion of each CNN model in order

to significantly reduce computational resources needed to train these models. This is a

different approach to those currently present in the literature [4, 5, 7, 11], which do not

freeze any conv layers and finetune the whole network. Moreover, freezing the layers

means that instead of just blocking the parameter updates, we perform the forward pass

Chapter 3 Camera Relocalization using Deep Learning 51

of the entire training and testing datasets until the last frozen layer and store this output

to disk. Afterwards, during actual training, we only instantiate the non-frozen part of

the model and feed it with the stored features instead of actual images. This allows for

much faster convergence and training on GPUs that do not have enough VRAM to fit

decent batch sizes.

Figure 3.1: General structure of the Camera Relocalization model - showing Regressor
model

Figure 3.1 illustrates a general structure of the Camera Relocalization model,

where CNN refers to one of the models described above. Images are forwarded through

the frozen part of the CNN and the resulting features are stored to disk. Subsequently,

those features are loaded during training and only the remaining part of the CNN is

finetuned. The figure illustrates an example with a regressor model as the top model

attached to the CNN output. The regressor model consists of a fully-connected (FC)

layer with 2048 neurons and a ReLU activation function, followed by a fork that creates

two branches. The first branch contains a fully-connected layer with 3 neurons and a

linear activation predicting position, while the second branch has a fully-connected layer

with 4 neurons and a linear activation and outputs a quaternion that corresponds to the

orientation prediction.

3.4.2 Spatial LSTM

Despite LSTMs being mostly used for processing temporal sequences, recent work

started showing that the memory capability of the LSTM can be advantageous for en-

coding contextual information. For example, Visin et al. in [111] replaced convolutional

layers with RNNs sweeping across spatial dimensions and showed that this type of ar-

chitecture is a viable alternative to CNNs, but further investigation is required. In

Chapter 3 Camera Relocalization using Deep Learning 52

[112–114] authors successfully applied spatial LSTM for person re-identification, scene

labeling and semantic object object parsing.

Figure 3.2: Spatial-LSTM model

The proposed Spatial-LSTM model is a modification to the original PoseNet

model proposed by Walch et al. in [11]. Instead of directly regressing position and

orientation from the output of the first fully-connected layer (FC 2048), we add an

Chapter 3 Camera Relocalization using Deep Learning 53

additional layer, which reshapes this output into a 64× 32 matrix. This matrix can be

then processed by an LSTM along different directions. For example, if we treat rows

from this matrix as sequences, we can then apply a top-down and bottom-up LSTMs.

Furthermore, treating the columns as sequences allows us to employ left-right and right-

left LSTMs. Figure 3.2 depicts architecture of the proposed Spatial-LSTM model with

four-way LSTM processing. For simplicity, the figure illustrates CNN as a single block,

but is treated in the same way as in the Regressor model, where only a small part of it

is finetuned.

3.4.3 Temporal GRU

The methods described in sections 3.4.2 and 3.4.1 process a single image at a time.

However, one can easily notice that it should be beneficial to process images originating

from videos and exploit the temporal smoothness between consecutive frames. For

example, if two images taken from different locations look very similar due to perceptual

aliasing, then it might be impossible to correctly predict the location without a broader

context. This context can be provided by recurrent neural networks, which have proven

to work exceedingly well for these types of problems, such as video classification [115]

or visual question answering [116]. More closely to our task of localization, PlaNet [104]

used LSTMs to improve the joint prediction of multiple images from a photo album,

while VidLoc [5] used short video clips in order to exploit even more sever temporal

smoothness, which is present in videos. Our work follows closely the VidLoc model.

We base our model on GRUs (described in 2.4.3), as they have empirically proven

us to perform better than LSTMs in this problem. Figure 3.3 depicts the architecture of

our Temporal-GRU model. It depicts the unrolled model, which employs bidirectional

structure, meaning that at a given point in time, the sequence is scanned backwards and

forwards. The output of GRU units from both directions is then concatenated along the

last dimension and passed to the second layer of GRUs. In the last step, the network

branches out and predicts position and orientation in the same way as in the previously

described models. All trainable parameters across all time-steps are shared.

Chapter 3 Camera Relocalization using Deep Learning 54

Figure 3.3: Unrolled Temporal-GRU model

Chapter 4

Experiments

In this chapter, we carry out an experimental evaluation of the methods intro-

duced in 3. In section 4.1, we first introduce the datasets, which are the subject of

this evaluation. In section 4.3, we show the results of the proposed models on the

7Scenes dataset, while in section 4.4 we show the results on the novel Airframe dataset.

Throughout this section Spatial-LSTM refers to the model defined in section 3.4.2, while

Regressor refers to the model defined in section 3.4.1. QEH and NH denote different

loss function used in conjunction with the model architecture, where the first one cor-

responds to Quaternion-Error-Homoscedastic (see 3.3.3) and the second one to

Naive-Homoscedastic (see 3.3.2).

4.1 Datasets

This section presents two datasets used in the experiments. 7Scenes is an indoor

dataset published by Microsoft and introduced in [12] together with the SCoRe Forest

algorithm. We also propose a new challenging dataset called Airframe, where the goal

is to perform localization with respect to a dynamic airframe model.

4.1.1 7Scenes

7Scenes dataset [12] comprises of seven distinct indoor datasets of RGB-D im-

ages and their corresponding 6-DOF poses. The poses are recorded in form of SE(3)

55

Chapter 4 Experiments 56

Table 4.1: 7Scenes dataset summary

images Spatial
Extent [m]

Volume
Scenes Train Test [m3]

Chess 4000 2000 3× 2× 1 6
Fire 2000 2000 2.5× 0.5× 1 1.25
Heads 1000 1000 2× 0.5× 1 1
Office 6000 4000 2.5× 2× 1.5 7.5
Pumpkin 4000 2000 2.5× 2× 1 5
Red Kitchen 7000 5000 4× 3× 1.5 18
Stairs 2000 1000 2.5× 2× 1.5 7.5

transformations. Each dataset consists of multiple training and testing sequences with

each sequence amounting to 1000 images. Table 4.1 depicts the summary of the 7Scenes

dataset, showing the spatial extent, volume and number of training and testing images

for each scene. Figure 4.2 presents some sample images from the dataset. The dataset

was gather by several people using a hand-held Kinect RGB-D camera producing images

with 640x480 resolution. Ground-truth data was obtained using KinectFusion system.

The images exhibit specularities, motion-blur, flat-surfaces, varying lighting conditions

and ambiguities, such as repeated steps in Stairs scene. The dataset does not provide

any calibration files.

Table 4.2: Example images from 7Scenes dataset

Chess Fire Heads Office

Pumpkin Red kitchen Stairs

Chapter 4 Experiments 57

4.1.2 Airframe

We introduce a new indoor dataset called Airframe depicting an airframe model

built in the Automation & Robotics Research Group’s [117] lab at University of Lux-

embourg. The dataset is composed of 6 subsets, each containing RGB images of the

same airframe model, but appearing in a different position and orientation. The images

map to camera poses with respect to the airframe model and are recorded as tuples

p = (x, q), where x is the translation and q is the quaternion.

The images were captured using a DJI M100 [118] aerial robot equipped with a

gyro-stabilized Zenmuse X3 camera flying around the airframe model. We recorded RGB

images at 1280 × 720 resolution using Robot Operating System (ROS) [119], while the

ground-truth data was gathered using high-precision motion-capture OptiTrack system

[120]. In order to collect the data and synchronize images with their corresponding

poses, we have developed a collection of ROS packages:

• extract-and-sync is a tool that allows to sync image messages from a rosbag with

a desired tf transformation [121]. The package is publicly available at: https:

//github.com/asiron/extract-and-sync.

• dji sdk utils is a collection of ROS packages, which adds additional function-

ality to DJI aerial robots, such as adding tf transformation tree of the camera

gimbal, converting GPS messages into a local Euclidean coordiante frame using

WGS-84 standard. The package is publicly available from https://github.com/

snt-robotics/dji_sdk_utils/tree/master/dji_rtk_tools

Figure 4.1 illustrates the aerial robot used for gathering the dataset and figure

4.3 depicts position and orientation of the airframe model in all subsets of the Airframe

dataset. We name these subsets Position 1, Position 2, Finally, we create

two datasets from the original set and call them airframe-mixed and airframe-ind

respectively. The first one contains training and testing images from all 6 positions, while

the second one is significantly more difficult as positions 1 through 5 are designated for

training only, leaving the last sixth position as the only testing sequence. This means,

that if the model performs well on airframe-ind1 then it has truly learn how to localize

1airframe-ind, where ”ind” stands for independent due to last sequence being entirely independent
from all other training sequences.

https://github.com/asiron/extract-and-sync
https://github.com/asiron/extract-and-sync
https://github.com/snt-robotics/dji_sdk_utils/tree/master/dji_rtk_tools
https://github.com/snt-robotics/dji_sdk_utils/tree/master/dji_rtk_tools

Chapter 4 Experiments 58

Figure 4.1: M100 with Manifold and Zenmuse X3 camera

Table 4.3: 6 airframe positions in Airframe dataset

Position 1 Position 2 Position 3
p = (−0.405, 2.355, 1.621) p = (0.616, 2.980, 1.623) p = (1.799, 1.165, 1.625)

q = (−0.010, 0.014, 0.870,−0.493) q = (0.013,−0.012,−0.707, 0.707) q = (−0.007, 0.022, 0.983,−0.182)

Position 4 Position 5 Position 6
p = (0.801,−1.214, 1.625) p = (0.798,−1.796, 1.628) p = (2.262,−0.985, 1.629)

q = (0.005, 0.017, 0.769, 0.639) q = (0.003, 0.018, 0.788, 0.615) q = (−0.005, 0.011, 0.972, 0.234)

itself with respect to that object without relying on any visual clues present in the

environment. It means that it had learned the object detection task and ignores all

other objects. Table 4.4 shows the summary of training and testing splits for both

airframe-mixed and airframe-ind. Lastly, the spatial extent of the Airframe dataset

is 6.7× 5.1× 5 ≈ 170 [m3].

Chapter 4 Experiments 59

Table 4.4: Airframe dataset summary

airframe-mixed airframe-ind
images # images

train test train test

Position 1 3301 918 4219 0
Position 2 1451 1087 2538 0
Position 3 1733 809 2542 0
Position 4 1120 385 1505 0
Position 5 2002 670 2672 0
Position 6 3792 1628 0 5420

Sum 13399 5497 13476 5420

Total 18896

4.2 Training methodology

The proposed models have been implemented in Keras [42] (a high-level API of

TensorFlow [39]) and are publicly available at https://github.com/snt-robotics/

camera_relocalization. The repository contains Python scripts for:

• extracting and storing CNN features used during training (as described in section

3.4.1)

• computing necessary mean files

• creation of image sequences for training Temporal-GRU models

• preprocessing of 7Scenes data

• computation of saliency maps

• training and evaluating models

When training all our models, we used Adam optimizer (see 2.2.6) with default

hyperparameters: β1 = 0.9, β2 = 0.999 andε = 1× 10−8. We split the training set

into training and validation sets in order to perform random hyperparameter search.

We found out that dropout and L2 regularization actually reduced the performance.

Therefore, we set dropout to p = 0 and L2 regularization strength to λ = 0. Lastly,

we found the optimal learning rate to be α = 2× 10−4. We trained the models using

NVIDIA GeForce GTX 950 GPU with 2GB of VRAM and a 12-core Intel Xeon E5645

CPU with 12 GB of RAM. Due to the low amount of accessible VRAM, we were not

able to test our models to their full potential.

https://github.com/snt-robotics/camera_relocalization
https://github.com/snt-robotics/camera_relocalization

Chapter 4 Experiments 60

Table 4.5: SpatialLSTM and Regressor results on 7Scenes dataset using GoogLeNet
pretrained on ImageNet

Data set Method
median mae max std

pos orien pos orien pos orien pos orien

Chess

Spatial-LSTM,QEH 0.157 6.95 0.192 8.29 0.633 27.13 0.122 5.36
Spatial-LSTM,NH 0.159 9.85 0.188 21.40 0.618 93.69 0.121 23.93
Regressor,QEH 0.196 7.21 0.244 8.69 0.828 29.49 0.159 5.58
Regressor,NH 0.166 9.73 0.200 21.93 0.664 94.11 0.131 24.40

Fire

Spatial-LSTM,QEH 0.325 12.72 0.364 18.09 1.044 99.41 0.232 17.78
Spatial-LSTM,NH 0.342 15.49 0.390 24.50 1.055 179.83 0.234 27.38
Regressor,QEH 0.321 12.92 0.379 19.08 1.286 106.79 0.234 19.28
Regressor,NH 0.319 38.05 0.370 46.03 1.131 128.75 0.237 36.89

Heads

Spatial-LSTM,QEH 0.164 14.79 0.191 16.06 0.565 50.00 0.103 9.09
Spatial-LSTM,NH 0.172 13.91 0.203 19.12 0.552 82.82 0.112 16.62
Regressor,QEH 0.178 15.10 0.211 16.77 0.616 52.15 0.113 9.48
Regressor,NH 0.178 19.89 0.202 28.33 0.572 169.02 0.100 22.05

Office

Spatial-LSTM,QEH 0.233 8.67 0.300 11.73 1.221 90.33 0.225 10.56
Spatial-LSTM,NH 0.243 8.58 0.301 11.49 1.324 178.19 0.217 12.49
Regressor,QEH 0.271 8.31 0.348 11.07 1.444 81.44 0.257 9.88
Regressor,NH 0.327 9.04 0.393 15.75 1.503 179.86 0.250 22.961

Pumpkin

Spatial-LSTM,QEH 0.332 20.90 0.383 52.06 1.209 179.97 0.234 60.43
Spatial-LSTM,NH 0.339 32.28 0.437 63.71 1.512 179.88 0.304 61.91
Regressor,QEH 0.334 48.96 0.438 70.26 1.466 179.94 0.304 62.06
Regressor,NH 0.423 39.85 0.475 68.81 1.352 179.94 0.271 63.19

Red kitchen

Spatial-LSTM,QEH 0.322 8.17 0.430 13.10 2.776 160.51 0.377 18.50
Spatial-LSTM,NH 0.374 9.15 0.503 15.48 3.09 179.35 0.447 27.50
Regressor,QEH 0.373 8.40 0.493 13.86 2.215 161.10 0.381 19.67
Regressor,NH 0.429 9.10 0.555 16.18 2.198 179.52 0.387 24.58

Stairs

Spatial-LSTM,QEH 0.365 12.99 0.359 13.51 1.033 29.67 0.158 6.41
Spatial-LSTM,NH 0.363 43.06 0.363 44.29 0.96 112.15 0.151 20.75
Regressor,QEH 0.424 14.80 0.493 14.65 1.748 37.32 0.287 7.74
Regressor,NH 0.434 12.07 0.505 13.83 1.799 117.97 0.299 8.29

4.3 Results on 7Scenes dataset

In this section, we present results on 7Scenes dataset using our proposed models.

Table 4.5 depicts absolute errors of proposed models on 7Scenes dataset using

GoogLeNet pretrained on ImageNet network as a base feature extractor. We can notice,

that QEH loss function almost always performs better than NH loss function, especially

when it comes orientation error, which is expected. Moreover, QEH also decreases

position error drastically, for example in Red Kitchen scene, it improves the median

position error by approximately 5cm for both Spatial-LSTM and Regressor model types.

Places365 is a dataset for scene recognition task. Therefore, as shown in sec-

tion 2.5, we should expect to get better results, when the CNN was pretrained on this

dataset, because localization task is ”closer” to scene recognition than image classifica-

tion. However, when we compare results from ImageNet (table 4.5) to Places365 (table

4.6), we see that except for Red Kitchen median position error is lower for ImageNet

Chapter 4 Experiments 61

Table 4.6: SpatialLSTM and Regressor results on 7Scenes dataset using GoogLeNet
pretrained on Places365

Data set Method
median mae max std

pos orien pos orien pos orien pos orien

Chess

Spatial-LSTM,QEH 0.177 6.41 0.219 8.06 0.628 30.15 0.135 5.80
Spatial-LSTM,NH 0.243 8.21 0.284 13.74 0.879 176.34 0.161 18.20
Regressor,QEH 0.203 6.53 0.242 7.87 0.734 28.10 0.155 5.43
Regressor,NH 0.183 9.45 0.222 21.27 0.775 93.32 0.142 23.98

Fire

Spatial-LSTM,QEH 0.331 13.14 0.366 16.70 1.276 111.20 0.209 16.40
Spatial-LSTM,NH 0.346 38.08 0.383 46.24 1.406 136.64 0.236 37.74
Regressor,QEH 0.362 15.01 0.405 19.34 1.369 108.19 0.231 17.62
Regressor,NH 0.379 35.96 0.417 43.75 1.265 129.78 0.239 36.53

Heads

Spatial-LSTM,QEH 0.180 14.40 0.208 17.23 0.769 52.02 0.112 9.22
Spatial-LSTM,NH 0.167 13.77 0.189 18.87 0.592 81.05 0.089 17.09
Regressor,QEH 0.183 14.24 0.222 16.78 0.693 43.45 0.120 8.32
Regressor,NH 0.180 34.52 0.212 42.85 0.694 122.04 0.115 28.94

Office

Spatial-LSTM,QEH 0.253 7.97 0.310 10.53 1.135 142.59 0.197 11.79
Spatial-LSTM,NH 0.267 8.12 0.336 12.65 1.604 179.47 0.219 18.95
Regressor,QEH 0.289 8.03 0.356 11.02 1.230 102.30 0.231 10.64
Regressor,NH 0.307 8.25 0.374 14.40 1.309 175.96 0.238 21.32

Pumpkin

Spatial-LSTM,QEH 0.328 17.84 0.398 45.90 1.611 180.00 0.292 56.24
Spatial-LSTM,NH 0.362 24.21 0.437 56.89 1.273 179.88 0.271 62.50
Regressor,QEH 0.360 10.52 0.434 15.38 1.607 73.39 0.281 13.05
Regressor,NH 0.361 26.41 0.460 65.20 1.475 179.99 0.316 64.99

Red kitchen

Spatial-LSTM,QEH 0.299 7.44 0.401 11.84 2.054 159.87 0.303 14.47
Spatial-LSTM,NH 0.323 8.63 0.414 11.10 2.252 178.52 0.297 11.56
Regressor,QEH 0.370 7.99 0.498 13.64 1.818 116.55 0.372 16.74
Regressor,NH 0.348 8.60 0.486 13.07 1.833 177.91 0.364 18.55

Stairs

Spatial-LSTM,QEH 0.392 13.57 0.448 13.73 1.399 53.27 0.199 6.89
Spatial-LSTM,NH 0.390 12.15 0.462 19.95 1.341 94.89 0.218 19.70
Regressor,QEH 0.406 14.11 0.447 14.20 1.427 50.76 0.192 7.22
Regressor,NH 0.419 40.68 0.458 43.65 1.436 110.95 0.192 19.53

pretrained model. This could be caused by the fact that we are finetuning the last 3

inception blocks of GoogLeNet, at which point all classification specific features may

have disappeared.

Table 4.13 illustrates results of our proposed models when trained using Incep-

tion ResNet V2 pretrained on ImageNet as the base feature extractor. As shown, in

the previous examples the difference in median angular error between QEH and NH is

clearly visible. For example, for Fire scene QEH achieves approximately ∼ 15◦ median

error for both Spatial-LSTM and Regressor models , while NH barely gets below ∼ 40◦.

This phenomena is visible across the results. Even if NH loss function coincidently

outperforms QEH it is never by a huge margin.

Table 4.8 displays results from VGG16 pretrained on Hybrid1365 dataset. This

dataset is very interesting, because it combines the ImageNet dataset with the Places365

Chapter 4 Experiments 62

Table 4.7: SpatialLSTM and Regressor results on 7Scenes datasets using Incep-
tion ResNet V2 pretrained on ImageNet

Data set Method
median mae max std

pos orien pos orien pos orien pos orien

Chess

Spatial-LSTM,QEH 0.164 7.36 0.209 8.67 0.838 42.41 0.149 5.95
Spatial-LSTM,NH 0.162 72.07 0.205 72.36 0.869 179.88 0.142 45.06
Regressor,QEH 0.197 7.78 0.253 9.59 1.129 46.45 0.181 6.61
Regressor,NH 0.209 13.32 0.255 23.68 1.015 92.07 0.167 23.07

Fire

Spatial-LSTM,QEH 0.344 15.28 0.401 20.10 1.137 101.21 0.231 17.08
Spatial-LSTM,NH 0.333 37.49 0.369 47.85 1.214 143.94 0.208 38.25
Regressor,QEH 0.354 16.03 0.384 20.66 0.986 87.25 0.203 17.10
Regressor,NH 0.365 40.16 0.398 48.67 1.053 147.81 0.202 38.29

Heads

Spatial-LSTM,QEH 0.358 16.57 0.400 18.57 0.992 53.47 0.212 9.55
Spatial-LSTM,NH 0.398 21.18 0.484 23.99 1.040 61.04 0.229 12.49
Regressor,QEH 0.262 17.05 0.284 18.95 0.874 52.13 0.140 9.39
Regressor,NH 0.201 37.56 0.227 42.94 0.739 119.32 0.128 28.02

Office

Spatial-LSTM,QEH 0.245 8.03 0.308 11.19 1.351 105.26 0.215 10.50
Spatial-LSTM,NH 0.253 9.10 0.315 15.24 1.458 178.47 0.220 22.35
Regressor,QEH 0.282 8.54 0.346 11.49 1.351 74.88 0.231 10.49
Regressor,NH 0.291 8.97 0.355 17.18 1.335 179.77 0.234 26.24

Pumpkin

Spatial-LSTM,QEH 0.446 50.47 0.473 72.16 1.205 179.99 0.250 59.96
Spatial-LSTM,NH 0.448 51.05 0.500 70.02 1.497 179.91 0.286 56.44
Regressor,QEH 0.322 19.49 0.408 36.30 1.463 179.89 0.290 42.36
Regressor,NH 0.378 51.22 0.458 65.79 1.418 179.89 0.286 52.13

Red kitchen

Spatial-LSTM,QEH 0.358 9.19 0.476 14.70 2.179 143.70 0.372 19.88
Spatial-LSTM,NH 0.366 8.56 0.483 11.29 1.728 174.74 0.333 11.68
Regressor,QEH 0.353 8.93 0.482 14.32 2.468 119.91 0.378 16.36
Regressor,NH 0.366 15.44 0.491 38.14 2.440 179.98 0.380 44.68

Stairs

Spatial-LSTM,QEH 0.345 14.69 0.559 16.16 1.934 50.51 0.441 8.92
Spatial-LSTM,NH 0.350 11.92 0.571 19.40 1.928 86.96 0.450 19.38
Regressor,QEH 0.346 15.05 0.429 15.94 1.813 43.93 0.297 9.59
Regressor,NH 0.361 11.70 0.422 19.56 1.717 90.77 0.251 20.41

dataset 2. It was also shown by Zhou et al. in [110] that a VGG16 pretrained on this

dataset achieves great results on other smaller datasets. In fact, the VGG16-Hybrid1365

model combined with a Spatial-LSTM and QEH loss function gives us the best results

for 5 out of 7 scenes compared to the previously shown architectures.

4.3.1 Summary

In this section, we present a summary to the experimental evaluation of the

proposed models on 7Scenes dataset. We compare our results with the very recent

state-of-the-art techniques. Table 4.9 illustrates a comparison between PoseNet [4],

spatial LSTM introduced by Walch et al. in [11] and an improved PoseNet [7], that

learns the optimal β by means of homoscedastic uncertainty loss function.

2ImageNet contains 1000 classes, which added to 365 classes from Places365 dataset form a hybrid
dataset with 1365 classes

Chapter 4 Experiments 63

Table 4.8: SpatialLSTM and Regressor results on 7Scenes dataset using VGG16
pretrained on Hybrid1365

Data set Method
median mae max std

pos orien pos orien pos orien pos orien

Chess

Spatial-LSTM,QEH 0.148 5.261 0.179 7.033 0.674 24.63 0.121 4.972
Spatial-LSTM,NH 0.137 7.868 0.172 19.71 0.749 95.00 0.121 24.73
Regressor,QEH 0.188 5.805 0.225 6.621 0.678 28.70 0.143 4.293
Regressor,NH 0.197 8.157 0.246 19.68 0.715 97.09 0.171 24.27

Fire

Spatial-LSTM,QEH 0.272 10.62 0.301 14.49 0.826 72.90 0.186 12.99
Spatial-LSTM,NH 0.281 35.42 0.318 45.86 0.904 135.03 0.180 39.99
Regressor,QEH 0.432 12.884 0.497 17.08 1.327 86.68 0.275 15.58
Regressor,NH 0.459 15.95 0.546 20.90 1.277 179.52 0.292 20.02

Heads

Spatial-LSTM,QEH 0.177 14.53 0.200 14.83 0.503 36.26 0.103 7.08
Spatial-LSTM,NH 0.209 14.10 0.236 18.92 0.712 80.77 0.131 16.54
Regressor,QEH 0.215 14.54 0.250 15.03 0.692 38.46 0.132 7.40
Regressor,NH 0.227 14.05 0.250 18.83 0.728 78.16 0.126 16.43

Office

Spatial-LSTM,QEH 0.212 7.83 0.268 10.18 1.122 81.02 0.186 9.35
Spatial-LSTM,NH 0.215 6.89 0.267 9.40 0.968 166.38 0.185 10.70
Regressor,QEH 0.271 6.76 0.343 9.35 1.407 80.40 0.243 8.90
Regressor,NH 0.317 7.03 0.371 9.45 1.422 178.05 0.241 12.52

Pumpkin

Spatial-LSTM,QEH 0.264 18.33 0.353 43.43 1.183 179.93 0.270 51.52
Spatial-LSTM,NH 0.401 21.93 0.442 51.79 1.343 179.99 0.277 57.07
Regressor,QEH 0.340 10.66 0.464 15.15 1.483 63.60 0.327 11.98
Regressor,NH 0.403 25.90 0.491 53.63 1.345 180.00 0.294 55.62

Red kitchen

Spatial-LSTM,QEH 0.291 7.04 0.403 11.83 2.607 150.60 0.360 18.89
Spatial-LSTM,NH 0.295 11.55 0.424 34.27 2.339 167.53 0.376 41.05
Regressor,QEH 0.371 6.93 0.536 12.88 2.310 154.93 0.430 21.41
Regressor,NH 0.422 8.55 0.589 15.61 2.52 179.85 0.456 29.66

Stairs

Spatial-LSTM,QEH 0.336 11.79 0.336 11.87 0.883 26.66 0.126 5.29
Spatial-LSTM,NH 0.330 44.32 0.354 45.09 0.667 111.57 0.139 21.34
Regressor,QEH 0.388 13.12 0.434 13.03 1.581 27.84 0.223 5.85
Regressor,NH 0.461 13.28 0.529 14.17 1.802 160.24 0.306 11.52

Table 4.9: 7Scenes summary results using VGG16 pretrained on Hybrid1365

7Scenes
PoseNet[4] PoseNet [11] PoseNet [7] This work
(β weight) spatial LSTM Learn σ2 Weight Spatial-LSTM

Chess 0.32m, 6.60◦ 0.24m, 5.77◦ 0.14m, 4.50◦ 0.137m, 7.868◦ ?

Fire 0.47m, 14.0◦ 0.34m, 11.9◦ 0.27m, 11.8◦ 0.272m, 10.62◦ †

Heads 0.30m, 12.2◦ 0.21m, 13.7◦ 0.18m, 12.1◦ 0.164m‡, 14.79◦ †

Office 0.48m, 7.24◦ 0.30m, 8.08◦ 0.20m, 5.77◦ 0.212m, 7.83◦ †

Pumpkin 0.49m, 8.12◦ 0.33m, 7.00◦ 0.25m, 4.82◦ 0.264m, 18.33◦ †

Red Kitchen 0.58m, 8.34◦ 0.37m, 8.83◦ 0.24m, 5.52◦ 0.291m, 7.04◦ †

Stairs 0.48m, 13.1◦ 0.40m, 13.7◦ 0.37m, 10.6◦ 0.336m, 11.79◦ †

? Naive-Homoscedastic or NH
† Quaternion-Error-Homoscedastic or QEH
‡ CNN is GoogLeNet-ImageNet

Chapter 4 Experiments 64

We can see that even though, out of 16 convolutional layers in VGG16-Hybrid1365

model, we only finetune the last 3 layers, we are able to achieve the same or even better

results. This is due to the fact, that we combined the Spatial-LSTM architecture with

a homoscedastic loss function and also modified the orientation loss function to be a

proper loss function based on quaternion algebra. Therefore, we are able to beat the

improved PoseNet [7] by up to 2cm using a fraction of computational power required to

train it.

The empirical cumulative distribution functions are shown below. They prove the

importance of QEH loss function over NH loss function, by showing that the angular

error is almost always better and sometimes, as it is in the case of Stairs scene, leads to

a much better performance.

Table 4.10 displays saliency maps (described in 2.3.3) of the trained Spatial-LSTM

model which uses QEH loss function and was finetuned on a VGG16-Hybrid1365. We

can notice that the network has learned to recognize distinct objects in the scene and

uses them estimate the camera pose.

4.4 Results on Airframe dataset

Tables 4.11, 4.12, 4.13 and 4.14 show the results of the proposed models: Spatial-

LSTM and Regressor, using two loss functions: Quaternion-Error-Homoscedastic

(QEH) and Naive-Homoscedastic (NH) on 4 different CNN base feature extractors

same as in 7Scenes example. We can immediately see that VGG16 outperforms all other

architectures. In fact, we are mostly interested in airframe-ind dataset as it is more

demanding than airframe-mixed. For this more difficult dataset, VGG16-Hybrid1365

achieves highest score with Inception ResNet V2 right behind it. This shows, that even

if an architecture performs worse on one dataset such as 7Scenes, it does not necessarily

mean that it will perform the same across all datasets used for image-based localization

task.

Figures 4.3 and 4.2 depict cumulative error histograms for the airframe-mixed and

airframe-ind, where we see the same behavior as in 7Scenes dataset, meaning that QEH

loss function outperforms NH loss function and Spatial-LSTM outperforms Regressor

model.

Chapter 4 Experiments 65

Figure 4.15 displays 6 selected trajectories for the airframe-ind dataset. The ground-

truth trajectory is represented in green color and the prediction in red color. On the

left-hand side, we can notice trajectories, where the model accurately predicted poses.

However on the right-hand side, we see examples of predictions, which are far away from

ground-truth or are very noisy.

Figure 4.16 illustrates saliency maps for two selected images from the airframe-ind

dataset. We should expect that in this case, the model would ignore the environment

and only focus on the airframe model. However, that is not exactly the case, since some

parts visible in the background are important to the network.

4.4.1 Temporal-GRU comparison

Lastly, we show a Temporal-GRU model, which works on sequences of images.

However, due to resource constraints, we had to limit ourselves to sequences of 2 im-

ages, as larger sequences were not possible to train, due to not enough VRAM in the

GPU. Figure 4.17 illustrates results for 3 network architectures: GoogLeNet-ImageNet,

GoogLeNet-Places365 and VGG16-Hybrid1365. We use two loss functions as in previous

examples QEH and NH. We found out that it is very difficult to train these temporal

models. However, we were able to beat the previous best score of Spatial-LSTM with

QEH trained on VGG16-Hybrid1365 model.

Chapter 4 Experiments 66

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Chess trained on VGG16-Hybrid1365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Fire trained on VGG16-Hybrid1365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Heads trained on VGG16-Hybrid1365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

Chapter 4 Experiments 67

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Office trained on VGG16-Hybrid1365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Pumpkin trained on VGG16-Hybrid1365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Redkitchen trained on VGG16-Hybrid1365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

Chapter 4 Experiments 68

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Stairs trained on VGG16-Hybrid1365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

Chapter 4 Experiments 69

Table 4.10: Saliency maps for 7Scenes dataset trained on Spatial-LSTM,QEH using
VGG16-Hybrid1365

Original
Guided

Backprop
SmoothGrad Overlaid

Chapter 4 Experiments 70

Table 4.11: SpatialLSTM and Regressor results on Airframe datasets using
GoogLeNet pretrained on ImageNet

Data set Method
median mae max std

pos orien pos orien pos orien pos orien

airframe-mixed

Spatial-LSTM,QEH 0.193 3.85 0.294 5.39 2.906 165.31 0.370 6.24
Spatial-LSTM,NH 0.259 5.69 0.355 9.88 2.921 177.70 0.387 16.37
Regressor,QEH 0.264 3.91 0.407 5.82 3.379 164.41 0.454 7.02
Regressor,NH 0.350 6.75 0.490 12.40 3.855 178.13 0.519 20.45

airframe-ind

Spatial-LSTM,QEH 0.328 7.39 0.514 8.71 2.630 33.11 0.464 5.56
Spatial-LSTM,NH 0.418 13.44 0.594 15.76 2.712 90.73 0.467 10.65
Regressor,QEH 0.444 7.95 0.694 9.22 3.191 30.78 0.643 5.60
Regressor,NH 0.708 11.43 0.889 13.74 3.134 177.06 0.641 11.83

Table 4.12: SpatialLSTM and Regressor results on Airframe datasets using
GoogLeNet pretrained on Places365

Data set Method
median mae max std

pos orien pos orien pos orien pos orien

airframe-mixed

Spatial-LSTM,QEH 0.279 4.75 0.421 6.91 3.087 164.35 0.480 7.88
Spatial-LSTM,NH 0.292 7.50 0.430 16.72 2.802 167.42 0.454 22.30
Regressor,QEH 0.350 5.00 0.500 7.80 3.109 163.70 0.495 8.71
Regressor,NH 0.399 6.30 0.583 11.95 3.226 179.61 0.552 16.82

airframe-ind

Spatial-LSTM,QEH 0.545 10.41 0.655 11.72 2.750 48.19 0.408 6.97
Spatial-LSTM,NH 0.627 14.97 0.730 19.47 2.477 176.96 0.434 17.34
Regressor,QEH 0.673 10.78 0.807 12.02 2.598 47.14 0.494 6.75
Regressor,NH 0.906 17.09 0.978 21.25 2.686 173.46 0.541 15.88

Table 4.13: SpatialLSTM and Regressor results on Airframe datasets using Incep-
tion ResNet V2 pretrained on ImageNet

Data set Method
median mae max std

pos orien pos orien pos orien pos orien

airframe-mixed

Spatial-LSTM,QEH 0.196 3.76 0.279 4.74 3.087 164.39 0.325 4.65
Spatial-LSTM,NH 0.273 5.13 0.377 8.64 2.952 179.52 0.393 16.28
Regressor,QEH 0.194 3.37 0.287 4.69 2.086 164.68 0.284 5.36
Regressor,NH 0.265 5.86 0.435 11.10 2.898 179.55 0.474 20.48

airframe-ind

Spatial-LSTM,QEH 0.282 5.28 0.417 6.64 2.359 32.98 0.354 4.86
Spatial-LSTM,NH 0.366 9.76 0.537 13.00 2.877 178.97 0.454 13.58
Regressor,QEH 0.287 4.63 0.431 5.88 2.475 34.19 0.386 4.74
Regressor,NH 0.391 6.78 0.500 11.95 2.211 179.27 0.328 17.71

Table 4.14: SpatialLSTM and Regressor results on Airframe datasets using VGG16
pretrained on Hybrid1365

Data set Method
median mae max std

pos orien pos orien pos orien pos orien

airframe-mixed

Spatial-LSTM,QEH 0.184 4.22 0.293 5.69 2.600 164.51 0.340 5.35
Spatial-LSTM,NH 0.229 5.66 0.32 8.75 2.269 179.44 0.289 12.59
Regressor,QEH 0.229 3.97 0.358 5.58 2.733 163.81 0.370 6.03
Regressor,NH 0.286 7.06 0.429 14.71 3.125 163.22 0.437 19.47

airframe-ind

Spatial-LSTM,QEH 0.268 5.16 0.4206 6.53 2.367 28.86 0.376 4.59
Spatial-LSTM,NH 0.356 10.29 0.487 13.66 1.747 177.08 0.337 15.56
Regressor,QEH 0.415 5.92 0.628 7.50 2.372 36.15 0.558 5.32
Regressor,NH 0.439 50.12 0.588 57.23 2.301 179.81 0.473 35.12

Chapter 4 Experiments 71

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for airframe-ind trained on VGG16-Hybrid1365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

Figure 4.2: Error histogram for airframe-ind dataset trained on VGG16-Hybrid1365

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for airframe-mixed trained on VGG16-Hybrid1365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

Figure 4.3: Error histogram for airframe-mixed dataset trained on VGG16-
Hybrid1365

Chapter 4 Experiments 72

Table 4.15: Top-down view of predicted trajectories on airframe-ind dataset

1.0 1.5 2.0 2.5 3.0
x [m]

1.0

0.5

0.0

0.5

1.0

y
 [

m
]

0.5 1.0 1.5 2.0 2.5 3.0 3.5
x [m]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

y
 [

m
]

1.5 2.0 2.5 3.0 3.5 4.0
x [m]

0.5

0.0

0.5

1.0

1.5

2.0

y
 [

m
]

1 2 3 4 5
x [m]

3

2

1

0

1

2

y
 [

m
]

1.0 1.5 2.0 2.5 3.0
x [m]

0.5

0.0

0.5

1.0

1.5

y
 [

m
]

1.3 1.4 1.5 1.6 1.7
x [m]

1.9

2.0

2.1

2.2

2.3

y
 [

m
]

Chapter 4 Experiments 73

Table 4.16: Saliency maps for airframe-ind dataset trained on Spatial-LSTM,QEH
using VGG16-Hybrid1365

Original
Guided

Backprop
SmoothGrad Overlaid

Table 4.17: Comparison of Temporal-GRU results on different CNN architectures

Data set Method
median mae max std

pos orien pos orien pos orien pos orien

GoogLeNet
ImageNet

Temporal-GRU,QEH 0.340 7.059 0.485 8.512 2.698 33.96 0.412 5.382
Temporal-GRU,NH 0.437 8.68 0.565 11.79 3.426 174.1 0.434 11.90

GoogLeNet
Places365

Temporal-GRU,QEH 0.476 9.67 0.567 11.90 2.100 49.00 0.345 7.76
Temporal-GRU,NH 0.691 12.07 0.805 18.98 2.763 178 0.451 21.37

VGG16
Hybrid1365

Temporal-GRU,QEH 0.247 7.67 0.378 8.48 1.592 32.40 0.310 5.00
Temporal-GRU,NH 0.367 53.55 0.443 62.86 1.701 179.8 0.271 37.28

Conclusions

Image-based localization from RGB images remains a challenging task for deep

learning. In this work, we have shown three end-to-end approaches to this problem.

Firstly, we improved the naive orientation loss function by introducing proper quaternion

algebra for proper computation of the loss. Secondly, we combined the Spatial-LSTM

architecture recently introduced by [11] with another very recent method, which combats

the need of heavy finetuning of weights in a multi-task loss function [7]. This has proven

to be very significant allowing us to achieve competing and sometimes superior results

on a widely recognized 7Scenes dataset. Moreover, we have also investigated temporal

models for processing sequences of images, as suggested by [5]. This has been the most

challenging phase of this thesis and we concluded that more investigation is required as

the models are very promising. Lastly, we also introduced a novel dataset for image-

based localization, comprising of 6 subsets each containing labeled RGB images of an

airframe model situated at different positions and orientations.

74

A. Error histograms

75

B. Detailed VGG16 architecture 76

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Chess trained on GoogLeNet-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Fire trained on GoogLeNet-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Heads trained on GoogLeNet-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

B. Detailed VGG16 architecture 77

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Office trained on GoogLeNet-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Pumpkin trained on GoogLeNet-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Redkitchen trained on GoogLeNet-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

B. Detailed VGG16 architecture 78

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Stairs trained on GoogLeNet-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for airframe-ind trained on GoogLeNet-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for airframe-mixed trained on GoogLeNet-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

B. Detailed VGG16 architecture 79

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Chess trained on GoogLeNet-Places365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Fire trained on GoogLeNet-Places365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Heads trained on GoogLeNet-Places365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

B. Detailed VGG16 architecture 80

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Office trained on GoogLeNet-Places365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Pumpkin trained on GoogLeNet-Places365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Redkitchen trained on GoogLeNet-Places365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

B. Detailed VGG16 architecture 81

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Stairs trained on GoogLeNet-Places365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for airframe-ind trained on GoogLeNet-Places365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for airframe-mixed trained on GoogLeNet-Places365

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

B. Detailed VGG16 architecture 82

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Chess trained on InceptionResNetV2-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Fire trained on InceptionResNetV2-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Heads trained on InceptionResNetV2-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

B. Detailed VGG16 architecture 83

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Office trained on InceptionResNetV2-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Pumpkin trained on InceptionResNetV2-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Redkitchen trained on InceptionResNetV2-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

B. Detailed VGG16 architecture 84

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for Stairs trained on InceptionResNetV2-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for airframe-ind trained on InceptionResNetV2-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for airframe-mixed trained on InceptionResNetV2-ImageNet

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

B. Detailed VGG16 architecture

Table 18: VGG16 Architecture summary

L
a
y
e
r

F
il

te
rs

S
iz

e
S

tr
id

e
s

In
p

u
t

si
z
e

M
e
m

o
ry

W
e
ig

h
ts

In
p

u
t

-
-

-
22

4
×

22
4
×

3
22

4
∗

22
4
∗

3
=

15
0K

0
C

o
n
v

6
4

(3
,3

)
(1

,1
)

22
4
×

22
4
×

64
22

4
∗

22
4
∗

64
=

3.
2M

(3
∗

3
∗

3)
∗

64
=

1,
72

8
C

o
n
v

6
4

(3
,3

)
(1

,1
)

22
4
×

22
4
×

64
22

4
∗

22
4
∗

64
=

3.
2M

(3
∗

3
∗

64
)
∗

64
=

36
,8

64
P

o
o
l

-
(2

,2
)

(2
,2

)
11

2
×

11
2
×

64
11

2
∗

11
2
∗

64
=

80
0K

0
C

o
n
v

12
8

(3
,3

)
(1

,1
)

11
2
×

11
2
×

12
8

11
2
∗

11
2
∗

12
8

=
1.

6M
(3
∗

3
∗

64
)
∗

12
8

=
73
,7

28
C

on
v

12
8

(3
,3

)
(1

,1
)

11
2
×

11
2
×

12
8

11
2
∗

11
2
∗

12
8

=
1.

6M
(3
∗

3
∗

12
8)
∗

12
8

=
14

7
,4

56
P

o
o
l

-
(2

,2
)

(2
,2

)
56
×

56
×

12
8

56
∗

56
∗

12
8

=
40

0K
0

C
o
n
v

25
6

(3
,3

)
(1

,1
)

56
×

56
×

25
6

56
∗

56
∗

25
6

=
80

0K
(3
∗

3
∗

12
8)
∗

25
6

=
29

4
,9

12
C

o
n
v

25
6

(3
,3

)
(1

,1
)

56
×

56
×

25
6

56
∗

56
∗

25
6

=
80

0K
(3
∗

3
∗

25
6)
∗

25
6

=
58

9
,8

24
C

o
n
v

25
6

(3
,3

)
(1

,1
)

56
×

56
×

25
6

56
∗

56
∗

25
6

=
80

0K
(3
∗

3
∗

25
6)
∗

25
6

=
58

9
,8

24
P

o
o
l

-
(2

,2
)

(2
,2

)
28
×

28
×

25
6

28
∗

28
∗

25
6

=
20

0K
0

C
o
n
v

51
2

(3
,3

)
(1

,1
)

28
×

28
×

51
2

28
∗

28
∗

51
2

=
40

0K
(3
∗

3
∗

25
6)
∗

51
2

=
1,

17
9
,6

48
C

on
v

51
2

(3
,3

)
(1

,1
)

28
×

28
×

51
2

28
∗

28
∗

51
2

=
40

0K
(3
∗

3
∗

51
2)
∗

51
2

=
2,

35
9
,2

96
C

on
v

51
2

(3
,3

)
(1

,1
)

28
×

28
×

51
2

28
∗

28
∗

51
2

=
40

0K
(3
∗

3
∗

51
2)
∗

51
2

=
2,

35
9
,2

96
P

o
ol

-
(2

,2
)

(2
,2

)
14
×

14
×

51
2

14
∗

14
∗

51
2

=
10

0K
0

C
o
n
v

51
2

(3
,3

)
(1

,1
)

14
×

14
×

51
2

14
∗

14
∗

51
2

=
10

0K
(3
∗

3
∗

51
2)
∗

51
2

=
2,

35
9
,2

96
C

on
v

51
2

(3
,3

)
(1

,1
)

14
×

14
×

51
2

14
∗

14
∗

51
2

=
10

0K
(3
∗

3
∗

51
2)
∗

51
2

=
2,

35
9
,2

96
C

on
v

51
2

(3
,3

)
(1

,1
)

14
×

14
×

51
2

14
∗

14
∗

51
2

=
10

0K
(3
∗

3
∗

51
2)
∗

51
2

=
2,

35
9
,2

96
P

o
ol

-
(2

,2
)

(2
,2

)
7
×

7
×

51
2

7
∗

7
∗

51
2

=
25

K
0

F
C

4
00

0
-

-
1
×

1
×

40
96

40
96

7
∗

7
∗

51
2
∗

40
96

=
10

2,
76

0,
44

8
F

C
4
00

0
-

-
1
×

1
×

40
96

40
96

40
96
∗

40
96

=
16
,7

77
,2

16
F

C
4
00

0
-

-
1
×

1
×

10
00

10
00

40
96
∗

10
00

=
4,

09
6,

00
0

T
o
ta

l
fo

r
fo

rw
ar

d
p

as
s

p
er

im
ag

e:
24

M
*4

b
y
te

s
≈

93
M

B
13

8M
p

ar
am

et
er

s
T

ot
a
l

fo
r

b
ac

k
w

ar
d

p
a
ss

p
er

im
ag

e:
24

M
*

b
y
te

s
*

2
≈

18
6

M
B

85

List of Figures

1.1 Relationship between model capacity and error rate [26, Figure 5.3] 4

1.2 Grid search vs random search [29, Figure 1] 5

2.1 MNIST manifold [14, Figure 4] . 9

2.2 Comparison of biological and mathematical neurons 10

2.3 Multilayer perceptron with 2 hidden layers 11

2.4 4 different activation functions: sigmoid, tanh, ReLu and Leaky ReLU . . 13

2.5 Dropout applied to a 2-layer multilayer perceptron [45, Figure 1] 15

2.6 SGD with Momentum and NAG . 17

2.7 Example of a Convolution Layer applied on a RGB image 26

2.8 Example of a Pooling Layer [8, Figure 2.6] 27

2.9 Common architecture of a Convolutional Neural Network 28

2.10 Architecture of the VGG16 network [72, Slide 18] 29

2.11 Inception Module used in GoogLeNet . 30

2.12 GoogLeNet aka InceptionV1 with LRN layers 31

2.13 Basic residual block . 32

2.14 Inception ResNet V2 [79, Figure 2] . 32

2.15 96 convolutional filters from AlexNet [20, Figure 3] 33

2.16 VGG16’s penultimate layer visualization using t-SNE on 400 ImageNet
images [89, Figure 4] . 34

2.17 Comparison of saliency map methods (modified figure based on [90]) . . . 36

2.18 RNN and the same RNN with loops unrolled [91, Figure 2]) 36

2.19 Unrolled RNN architectures for different model types [96, Figure 1]) . . . 37

2.20 Inner-workings of an LSTM block [91, Figure 6]) 38

2.21 Inner structure of a GRU block [91, Figure 16]) 40

3.1 General structure of the Camera Relocalization model - showing Regressor
model . 51

3.2 Spatial-LSTM model . 52

3.3 Unrolled Temporal-GRU model . 54

4.1 M100 with Manifold and Zenmuse X3 camera 58

4.2 Error histogram for airframe-ind dataset trained on VGG16-Hybrid1365 . 71

4.3 Error histogram for airframe-mixed dataset trained on VGG16-Hybrid1365 71

86

List of Tables

4.1 7Scenes dataset summary . 56

4.2 Example images from 7Scenes dataset . 56

4.3 6 airframe positions in Airframe dataset 58

4.4 Airframe dataset summary . 59

4.5 SpatialLSTM and Regressor results on 7Scenes dataset using GoogLeNet
pretrained on ImageNet . 60

4.6 SpatialLSTM and Regressor results on 7Scenes dataset using GoogLeNet
pretrained on Places365 . 61

4.7 SpatialLSTM and Regressor results on 7Scenes datasets using Incep-
tion ResNet V2 pretrained on ImageNet 62

4.8 SpatialLSTM and Regressor results on 7Scenes dataset using VGG16 pre-
trained on Hybrid1365 . 63

4.9 7Scenes summary results using VGG16 pretrained on Hybrid1365 63

4.10 Saliency maps for 7Scenes dataset trained on Spatial-LSTM,QEH using
VGG16-Hybrid1365 . 69

4.11 SpatialLSTM and Regressor results on Airframe datasets using GoogLeNet
pretrained on ImageNet . 70

4.12 SpatialLSTM and Regressor results on Airframe datasets using GoogLeNet
pretrained on Places365 . 70

4.13 SpatialLSTM and Regressor results on Airframe datasets using Incep-
tion ResNet V2 pretrained on ImageNet 70

4.14 SpatialLSTM and Regressor results on Airframe datasets using VGG16
pretrained on Hybrid1365 . 70

4.15 Top-down view of predicted trajectories on airframe-ind dataset 72

4.16 Saliency maps for airframe-ind dataset trained on Spatial-LSTM,QEH
using VGG16-Hybrid1365 . 73

4.17 Comparison of Temporal-GRU results on different CNN architectures . . 73

18 VGG16 Architecture summary . 85

87

Bibliography

[1] David G Lowe. Distinctive image features from scale-invariant keypoints. Inter-

national journal of computer vision, 60(2):91–110, 2004.

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust

features. Computer vision–ECCV 2006, pages 404–417, 2006.

[3] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An

efficient alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE inter-

national conference on, pages 2564–2571. IEEE, 2011.

[4] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional

network for real-time 6-dof camera relocalization. In Proceedings of the IEEE

international conference on computer vision, pages 2938–2946, 2015.

[5] Ronald Clark, Sen Wang, Andrew Markham, Niki Trigoni, and Hongkai Wen.

Vidloc: 6-dof video-clip relocalization. arXiv preprint arXiv:1702.06521, 2017.

[6] Alex Kendall and Roberto Cipolla. Modelling uncertainty in deep learning for cam-

era relocalization. In Robotics and Automation (ICRA), 2016 IEEE International

Conference on, pages 4762–4769. IEEE, 2016.

[7] Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose

regression with deep learning. arXiv preprint arXiv:1704.00390, 2017.

[8] Florian Walch. Deep Learning for Image-Based Localization. Master’s thesis,

TECHNISCHE UNIVERSITAT MUNCHEN, Munich, Germany, 2016.

[9] Daoyuan Jia, Yongchi Su, and Chunping Li. Deep convolutional neural network

for 6-dof image localization. arXiv preprint arXiv:1611.02776, 2016.

88

Bibliography 89

[10] Iaroslav Melekhov, Juho Kannala, and Esa Rahtu. Relative camera pose estima-

tion using convolutional neural networks. arXiv preprint arXiv:1702.01381, 2017.

[11] Florian Walch, Caner Hazirbas, Laura Leal-Taixé, Torsten Sattler, Sebastian

Hilsenbeck, and Daniel Cremers. Image-based localization with spatial lstms.

arXiv preprint arXiv:1611.07890, 2016.

[12] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi,

and Andrew Fitzgibbon. Scene coordinate regression forests for camera relocaliza-

tion in rgb-d images. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2930–2937, 2013.

[13] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA,

1 edition, 1997. ISBN 0070428077, 9780070428072.

[14] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680, 2014.

[16] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A

survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[17] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.

Recommender systems survey. Knowledge-based systems, 46:109–132, 2013.

[18] Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize

documentation, 81:1–10, 2009.

[19] Gulshan V, Peng L, Coram M, and et al. Development and validation of a deep

learning algorithm for detection of diabetic retinopathy in retinal fundus pho-

tographs. JAMA, 316(22):2402–2410, 2016. doi: 10.1001/jama.2016.17216. URL

+http://dx.doi.org/10.1001/jama.2016.17216.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

+ http://dx.doi.org/10.1001/jama.2016.17216

Bibliography 90

[21] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap: Fully convolutional

localization networks for dense captioning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4565–4574, 2016.

[22] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hi-

erarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 580–587,

2014.

[23] Ryan Turner. A model explanation system. In Machine Learning for Signal Pro-

cessing (MLSP), 2016 IEEE 26th International Workshop on, pages 1–6. IEEE,

2016.

[24] Shi-ho Cheng. Unboxing the Random Forest Classifier: The Threshold Distribu-

tions. http://nerds.airbnb.com/unboxing-the-random-forest-classifier,

2015. Online, accessed 6 September 2017.

[25] David H Wolpert. The lack of a priori distinctions between learning algorithms.

Neural computation, 8(7):1341–1390, 1996.

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[27] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimiza-

tion of machine learning algorithms. In Advances in neural information processing

systems, pages 2951–2959, 2012.

[28] Andrej Karpathy. CS231n: Convolutional Neural Networks for Visual Recognition.

http://cs231n.github.io, 2016. Online, accessed 10 September 2017.

[29] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-

mization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[30] Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for

bayesian optimization of non-stationary functions. In International Conference on

Machine Learning, pages 1674–1682, 2014.

[31] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization

for general algorithm configuration. In Proc. of LION-5, page 507–523, 2011.

http://nerds.airbnb.com/unboxing-the-random-forest-classifier
http://www.deeplearningbook.org
http://cs231n.github.io

Bibliography 91

[32] Hal Daumé III. Hyperparameter search, Bayesian optimization and related topics.

https://nlpers.blogspot.lu/2014/10/hyperparameter-search-bayesian.

html, 2015. Online, accessed 11 September 2017.

[33] John Elder. Handbook of statistical analysis and data mining applications. Aca-

demic Press, 2009.

[34] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. Leakage

in data mining: Formulation, detection, and avoidance. ACM Transactions on

Knowledge Discovery from Data (TKDD), 6(4):15, 2012.

[35] Kaggle. Data Leakage. https://www.kaggle.com/wiki/Leakage. Online, ac-

cessed 13 September 2017.

[36] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[37] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

[38] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neu-

ral networks, 4(2):251–257, 1991.

[39] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

https://www.tensorflow.org/. Software available from tensorflow.org.

[40] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-

canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Ben-

gio. Theano: a CPU and GPU math expression compiler. In Proceedings of the

Python for Scientific Computing Conference (SciPy), June 2010. Oral Presenta-

tion.

https://nlpers.blogspot.lu/2014/10/hyperparameter-search-bayesian.html
https://nlpers.blogspot.lu/2014/10/hyperparameter-search-bayesian.html
https://www.kaggle.com/wiki/Leakage
https://www.tensorflow.org/

Bibliography 92

[41] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[42] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[43] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gra-

dient flow in recurrent nets: the difficulty of learning long-term dependencies.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-

tifiers: Surpassing human-level performance on imagenet classification. In Proceed-

ings of the IEEE international conference on computer vision, pages 1026–1034,

2015.

[45] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of machine learning research, 15(1):1929–1958, 2014.

[46] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of

Neuro-Nımes, 91(8), 1991.

[47] Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.

00006. URL http://distill.pub/2017/momentum.

[48] Yurii Nesterov. A method of solving a convex programming problem with conver-

gence rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376,

1983.

[49] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-

line learning and stochastic optimization. Journal of Machine Learning Research,

12(Jul):2121–2159, 2011.

[50] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed

deep networks. In Advances in neural information processing systems, pages 1223–

1231, 2012.

[51] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pages 1532–1543, 2014.

https://github.com/fchollet/keras
http://distill.pub/2017/momentum

Bibliography 93

[52] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[53] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[54] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-

bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM

Transactions on Mathematical Software (TOMS), 23(4):550–560, 1997.

[55] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of

artistic style. arXiv preprint arXiv:1508.06576, 2015.

[56] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis and

the controlled generation of natural stimuli using convolutional neural networks.

arXiv preprint arXiv:1505.07376, 12, 2015.

[57] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the Thirteenth International Con-

ference on Artificial Intelligence and Statistics, pages 249–256, 2010.

[58] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In International Conference on

Machine Learning, pages 448–456, 2015.

[59] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[60] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[61] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In Computer Vision and Pattern Recog-

nition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[62] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating

image descriptions. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3128–3137, 2015.

Bibliography 94

[63] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-

thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural

networks. In Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, pages 1725–1732, 2014.

[64] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. A con-

volutional neural network cascade for face detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 5325–5334, 2015.

[65] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015.

[66] Massimo Bertozzi, Alberto Broggi, Mike Del Rose, Mirko Felisa, Alain Rakotoma-

monjy, and Frédéric Suard. A pedestrian detector using histograms of oriented

gradients and a support vector machine classifier. In Intelligent Transportation

Systems Conference, 2007. ITSC 2007. IEEE, pages 143–148. IEEE, 2007.

[67] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.

Cnn features off-the-shelf: an astounding baseline for recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition workshops,

pages 806–813, 2014.

[68] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from

tiny images. 2009.

[69] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric

Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for

generic visual recognition. In International conference on machine learning, pages

647–655, 2014.

[70] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? In Advances in neural information processing

systems, pages 3320–3328, 2014.

[71] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Bibliography 95

[72] Thibaut Durand and Nicolas Thome. Deep learning and weak supervision for im-

age. http://webia.lip6.fr/~cord/pdfs/news/TalkDeepCordI3S.pdf. Online,

accessed 20 September 2017.

[73] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1–9, 2015.

[74] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818–

2826, 2016.

[75] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.

Inception-v4, inception-resnet and the impact of residual connections on learn-

ing. In AAAI, pages 4278–4284, 2017.

[76] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint

arXiv:1312.4400, 2013.

[77] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint

arXiv:1605.07146, 2016.

[78] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings

in deep residual networks. In European Conference on Computer Vision, pages

630–645. Springer, 2016.

[79] Alex Alemi. Improving Inception and Image Classification in TensorFlow. https:

//research.googleblog.com/2016/08/improving-inception-and-image.

html, 2016. Online, accessed 14 September 2017.

[80] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolu-

tional networks: Visualising image classification models and saliency maps. arXiv

preprint arXiv:1312.6034, 2013.

[81] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson.

Understanding neural networks through deep visualization. arXiv preprint

arXiv:1506.06579, 2015.

http://webia.lip6.fr/~cord/pdfs/news/TalkDeepCordI3S.pdf
https://research.googleblog.com/2016/08/improving-inception-and-image.html
https://research.googleblog.com/2016/08/improving-inception-and-image.html
https://research.googleblog.com/2016/08/improving-inception-and-image.html

Bibliography 96

[82] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer,

2014.

[83] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal

of Machine Learning Research, 9(Nov):2579–2605, 2008.

[84] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-

nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[85] Andrej Karpathy. What I learned from competing against a Con-

vNet on ImageNet. http://karpathy.github.io/2014/09/02/

what-i-learned-from-competing-against-a-convnet-on-imagenet/, 2014.

Online, accessed 20 September 2017.

[86] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-

miller. Striving for simplicity: The all convolutional net. arXiv preprint

arXiv:1412.6806, 2014.

[87] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep

networks. arXiv preprint arXiv:1703.01365, 2017.

[88] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wat-

tenberg. Smoothgrad: removing noise by adding noise. arXiv preprint

arXiv:1706.03825, 2017.

[89] Andrej Karpathy. t-SNE visualization of CNN codes. http://cs.stanford.edu/

people/karpathy/cnnembed/, . Online, accessed 21 September 2017.

[90] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, Martin Watten-

berg. SmoothGrad - PAIR Code project page. https://pair-code.github.

io/saliency/, 2014. Online, accessed 25 September 2017.

[91] Christopher Olah. Understanding LSTM Networks. http://colah.github.io/

posts/2015-08-Understanding-LSTMs/, 2015. Online, accessed 14 October 2017.

[92] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural

image caption generation with visual attention. In International Conference on

Machine Learning, pages 2048–2057, 2015.

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://cs.stanford.edu/people/karpathy/cnnembed/
http://cs.stanford.edu/people/karpathy/cnnembed/
https://pair-code.github.io/saliency/
https://pair-code.github.io/saliency/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bibliography 97

[93] Sara Rosenthal, Noura Farra, and Preslav Nakov. Semeval-2017 task 4: Sentiment

analysis in twitter. In Proceedings of the 11th International Workshop on Semantic

Evaluation (SemEval-2017), pages 502–518, 2017.

[94] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-

tions using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[95] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2014.

[96] Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/, . Online, ac-

cessed 28 September 2017.

[97] Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural

nets. Journal of computer and system sciences, 50(1):132–150, 1995.

[98] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition

with visual attention. arXiv preprint arXiv:1412.7755, 2014.

[99] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma,

Technische Universität München, 91, 1991.

[100] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-

dencies with gradient descent is difficult. IEEE transactions on neural networks,

5(2):157–166, 1994.

[101] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

[102] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-

tinual prediction with lstm. 1999.

[103] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-

pirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

preprint arXiv:1412.3555, 2014.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Bibliography 98

[104] Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet-photo geolocation with

convolutional neural networks. In European Conference on Computer Vision, pages

37–55. Springer, 2016.

[105] Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell, Jonas

Jansson, Rickard Karlsson, and P-J Nordlund. Particle filters for positioning,

navigation, and tracking. IEEE Transactions on signal processing, 50(2):425–437,

2002.

[106] Paul Newson and John Krumm. Hidden markov map matching through noise and

sparseness. In Proceedings of the 17th ACM SIGSPATIAL international conference

on advances in geographic information systems, pages 336–343. ACM, 2009.

[107] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improving image-based localiza-

tion by active correspondence search. In European conference on computer vision,

pages 752–765. Springer, 2012.

[108] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-based localization

using direct 2d-to-3d matching. In Computer Vision (ICCV), 2011 IEEE Inter-

national Conference on, pages 667–674. IEEE, 2011.

[109] Joan Sola. Quaternion kinematics for the error-state kalman filter. arXiv preprint

arXiv:1711.02508, 2017.

[110] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.

Places: A 10 million image database for scene recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2017.

[111] Francesco Visin, Kyle Kastner, Kyunghyun Cho, Matteo Matteucci, Aaron

Courville, and Yoshua Bengio. Renet: A recurrent neural network based alter-

native to convolutional networks. arXiv preprint arXiv:1505.00393, 2015.

[112] Rahul Rama Varior, Bing Shuai, Jiwen Lu, Dong Xu, and Gang Wang. A siamese

long short-term memory architecture for human re-identification. In European

Conference on Computer Vision, pages 135–153. Springer, 2016.

[113] Wonmin Byeon, Thomas M Breuel, Federico Raue, and Marcus Liwicki. Scene la-

beling with lstm recurrent neural networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3547–3555, 2015.

Bibliography 99

[114] Xiaodan Liang, Xiaohui Shen, Donglai Xiang, Jiashi Feng, Liang Lin, and

Shuicheng Yan. Semantic object parsing with local-global long short-term mem-

ory. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3185–3193, 2016.

[115] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol

Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep net-

works for video classification. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4694–4702, 2015.

[116] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,

C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In Proceed-

ings of the IEEE International Conference on Computer Vision, pages 2425–2433,

2015.

[117] Automation & Robotics Research Group. SnT - A&RG. https://wwwen.uni.lu/

snt/research/automation_robotics_research_group, 2016. Online, accessed

15 September 2017.

[118] SZ DJI Technology Co. DJI - Matrice 100. https://www.dji.com/matrice100,

2016. Online, accessed 10 September 2017.

[119] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy

Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating

system. In ICRA Workshop on Open Source Software, 2009.

[120] Natural Point, Inc. OptiTrack - Motion Capture system. http://optitrack.

com/, 2016. Online, accessed 10 September 2017.

[121] Tully Foote. tf: The transform library. In Technologies for Practical Robot Appli-

cations (TePRA), 2013 IEEE International Conference on, Open-Source Software

workshop, pages 1–6, April 2013. doi: 10.1109/TePRA.2013.6556373.

https://wwwen.uni.lu/snt/research/automation_robotics_research_group
https://wwwen.uni.lu/snt/research/automation_robotics_research_group
https://www.dji.com/matrice100
http://optitrack.com/
http://optitrack.com/

	Abstract
	Introduction
	1 Machine Learning
	1.1 Overview
	1.2 Common pitfalls and best practices
	1.2.1 Interpretability
	1.2.2 No free lunch theorem
	1.2.3 Underfitting, overfitting and model's capacity
	1.2.4 Hyperparameter optimization and validation sets
	1.2.5 Data leakage

	2 Deep Learning
	2.1 Manifold hypothesis
	2.2 Neural Networks
	2.2.1 Perceptron
	2.2.2 Multilayer perceptron
	2.2.3 Backpropagation
	2.2.4 Activation functions
	2.2.5 Regularization
	2.2.6 Optimization for training neural networks
	2.2.7 Weight Initialization

	2.3 Convolutional Neural Networks
	2.3.1 Overview
	2.3.2 Architectures
	2.3.3 Understanding and Visualizing CNNs

	2.4 Recurrent Neural Networks
	2.4.1 Vanilla RNN
	2.4.2 Long-short Term Memory
	2.4.3 Variants on Long-short Term Memory

	2.5 Transfer Learning

	3 Camera Relocalization using Deep Learning
	3.1 Problem Statement
	3.1.1 Relocalization using Content-Based Image Retrieval system
	3.1.2 Relocalization as Classification Problem
	3.1.3 Relocalization as Regression Problem

	3.2 Related work
	3.3 Loss functions for Relocalization as Regression
	3.3.1 Weighted loss
	3.3.2 Homoscedastic uncertainty based loss
	3.3.3 Quaternion error loss

	3.4 Proposed Methods
	3.4.1 Regressor
	3.4.2 Spatial LSTM
	3.4.3 Temporal GRU

	4 Experiments
	4.1 Datasets
	4.1.1 7Scenes
	4.1.2 Airframe

	4.2 Training methodology
	4.3 Results on 7Scenes dataset
	4.3.1 Summary

	4.4 Results on Airframe dataset
	4.4.1 Temporal-GRU comparison

	Conclusions
	A. Error histograms
	B. Detailed VGG16 architecture
	List of Figures
	List of Tables
	Bibliography

