

# Deep Convolutional Neural Networks for Camera Relocalization

Master's thesis defense - 13.12.2017

Maciej Marcin ŻURAD maciej.urad.001@student.uni.lu

Supervisor: Prof. Dr.-Ing. Holger Voos Reviewer: Prof. Dr. Christoph Schommer Advisor: Dr. Miguel A. Olivares-Mendez

Faculty of Science, Technology and Communication University of Luxembourg (FSTC)





### Outline

### Introduction

Deep Learning for Camera Relocalization

Experimental evaluation

Conclusions



### Introduction Problem Statement

### The Task

Camera relocalization, also known as image-based localization, is defined as the task of determining the location of a given image in an arbitrary coordinate frame.





Introduction Problem Statement (continued)

### Basic camera relocalization

Each image  $x \in I$  is processed independently in order to predict a 6-DOF pose  $y = (y_{pos} \in \mathbb{R}^3, y_{rot} \in SO(3)) = f(x)$ .

### Temporal camera relocalization

A sequence of *N* images  $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}$  taken at a constant rate is processed jointly to predict:  $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(n)} = f(\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)})$ .



### Introduction Related Work

### Approaches to camera relocalization

- fiducial markers based localization
  - markers usually not present in the environment
  - prone to blur, occlusion and illumination
- sparse feature based localization
  - rely on SIFT or ORB-like features
  - only work well in a controlled environment
  - do not scale with the spatial extent of the environment
  - computationally expensive
- traditional machine learning methods
- deep learning methods

# Introduction



### Machine Learning vs Deep Learning





What is deep learning?

#### Faculty of Sciences Technology and Communication

### **Deep Learning**

- a class of Machine Learning methods
- focuses on representation learning
- employs deep neural networks (DNN)
- scales very well with the amount of training data
- successful on a variety of difficult problems

# Introduction

Why deep learning for camera relocalization?

### Deep Learning for Camera Relocalization

- end-to-end training without the need to hand-craft features
- constant space and time complexity at test-time
- camera intrinsics are not required
- robust to blur, occlusion, texture-less surfaces and varying lighting conditions



### Outline

Introduction

### Deep Learning for Camera Relocalization

Experimental evaluation

Conclusions



Camera Relocalization as Regression

### Camera Relocalization as Regression

- ► Given a training dataset of image-pose pairs:  $X_{train} = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}$
- ► We train a model ŷ = f(x; θ), which regresses 6-DOF poses directly from image pixels
- ► The output prediction ŷ = (ŷ<sub>pos</sub> ∈ ℝ<sup>3</sup>, ŷ<sub>rot</sub> ∈ ℝ<sup>4</sup>) is composed of position and quaternion
- Models are composed of a pretrained CNN followed by a secondary regression model
- We use a multi-task loss function to learn position and attitude prediction at the same time



Related Work - Weighted loss function

### Naive weighted loss, Kendall et al. [ICCV 2015]

$$\mathcal{L} = \mathcal{L}_{pos} + \beta \mathcal{L}_{rot}$$
  
 $\mathcal{L}_{pos} = \| \mathbf{x} - \hat{\mathbf{x}} \|_{p}, \ \ \mathcal{L}_{rot} = \left\| \mathbf{q} - \frac{\hat{\mathbf{q}}}{\| \hat{\mathbf{q}} \|} \right\|_{p}$ 

- β is a hyper-parameter, which balances the importance between position and attitude loss
- Predicted quaternion *q̂* is normalized to force it to a valid rotation in 3D space
- Searching for optimal  $\beta$  is expensive

Related Work - Homoscedastic uncertainty based loss function

### Homoscedastic uncertainty loss, Kendall et al. [CVPR 2017]

- Homoscedastic uncertainty does not depend on the data and captures the uncertainty of the task itself.
- Loss for each task contains trainable parameter σ.

$$\mathcal{L}_{\sigma} = \mathcal{L}_{pos} \hat{\sigma}_{pos}^{-2} + \log \hat{\sigma}_{pos}^{2} + \mathcal{L}_{rot} \hat{\sigma}_{rot}^{-2} + \log \hat{\sigma}_{rot}^{2}$$

For improved numerical stability, we learn  $\hat{s} \leftarrow \log \hat{\sigma}^2$ .

$$\mathcal{L}_{\sigma} = \mathcal{L}_{pos} \; e^{-\hat{s}_{pos}} + \hat{s}_{pos} \; + \; \mathcal{L}_{rot} \; e^{-\hat{s}_{rot}} + \hat{s}_{rot}$$

We call this loss function Naive Homoscedastic (NH)

#### Faculty of Sciences Technology and Communication

# Deep Learning for Camera Relocalization

Proposed loss function - Quaternion error loss function

### Quaternion error based loss, This work

▶ Difference between two rotation in 3D space is defined as:  $\ominus: SO(3) \times SO(3) \mapsto \mathbb{R}^3$ , which returns a vectorial difference  $\boldsymbol{\theta} \in \mathbb{R}^3$  defined on quaternions as:

$$\begin{aligned} \boldsymbol{\theta} &= \log\left(\boldsymbol{q}^{-1} \otimes \hat{\boldsymbol{q}}\right) \\ \log \boldsymbol{q} &= \boldsymbol{q}_{v} \frac{\arctan(\|\boldsymbol{q}_{v}\|, q_{w})}{\|\boldsymbol{q}_{v}\|} \approx \frac{\boldsymbol{q}_{v}}{q_{w}} \left(1 - \frac{\|\boldsymbol{q}_{v}\|^{2}}{3q_{w}^{2}}\right) \approx \boldsymbol{q}_{v} \xrightarrow[\boldsymbol{\theta} \mapsto 0]{} \\ \mathcal{L}_{rot} &= \|\log\left(\boldsymbol{q}^{-1} \otimes \hat{\boldsymbol{q}}\right)\|_{p} \end{aligned}$$

► We combine this with homoscedastic uncertainty loss → Quaternion Error Homoscedastic (QEH)

Maciej Marcin ŻURAD

Deep Learning for Camera Relocalization

#### Faculty of Scien Technology and Communica

# Deep Learning for Camera Relocalization

### Transfer Learning

- We leverage Transfer Learning and compare performance on 4 different CNN models
- All FC layers and auxiliary branches are removed
- The output of a CNN is a feature vector passed in to a second model

|                     | 1178 | Denet Pla | See 365 | رم<br>Non-frozen la                | yers          | Total<br>params  | Trainable<br>params | Input size                | Output size    |
|---------------------|------|-----------|---------|------------------------------------|---------------|------------------|---------------------|---------------------------|----------------|
| GoogLeNet           | ×    | ×         |         | last 3<br>Inception modules        | $\sim 31.5\%$ | $\sim 6 {\rm M}$ | $\sim$ 3.3M         | $224 \times 224 \times 3$ | 1 	imes 1024   |
| Inception ResNet V2 | ×    |           |         | last 10 Inception<br>ResNet blocks | $\sim 11.4\%$ | $\sim$ 54.3M     | $\sim$ 23.5M        | $299 \times 299 \times 3$ | 1 	imes 1536   |
| VGG16               |      |           | ×       | last 3<br>Conv layers              | $\sim 23\%$   | $\sim$ 14.7M     | $\sim 7.1 M$        | $224 \times 224 \times 3$ | $1 \times 512$ |

#### Transfer Learning - VGG16 architecture



#### VGG16 architecture

| 112010  |  |
|---------|--|
| IVIALIE |  |
|         |  |



Transfer Learning - GoogLeNet architecture





### GoogLeNet architecture

Maciej Marcin ŻURAD

Transfer Learning - Inception ResNet V2 architecture



**Basic residual block** 



#### Inception ResNet V2 architecture

Maciej Marcin ŻURAD



### Deep Learning for Camera Relocalization Regressor model

### Regressor model

- Based on PoseNet, Kendall at al. [ICCV 2015]
- Images are fed through the frozen layers of the network and the output is stored
- Only the non-frozen layers from CNN are instantiated for training





## Deep Learning for Camera Relocalization Spatial-LSTM model

### Spatial-LSTM model

- Based on Walch et al. [ICCV 2017]
- Same as Regressor model, but intermediate spatial LSTMs are inserted for better structured feature correlation
- 4-way scanning of the reshaped feature vector





### Deep Learning for Camera Relocalization Temporal-GRU model

### Temporal-GRU model

- Based on VidLoc, Clark et al. [CVPR 2017]
- Employs bidirectional GRUs instead of LSTMs
- Poses are jointly regressed from sequences of images





### Outline

Introduction

Deep Learning for Camera Relocalization

Experimental evaluation

Conclusions

Maciej Marcin ŻURAD

Deep Learning for Camera Relocalization

13-12-2017 20 / 37



Training methodology

### Training methodology

- Implemented using Keras and TensorFlow<sup>a</sup>
- Trained on GeForce GTX 950 with 2GB of VRAM
- Random hyper-parameter search:
  - Adam optimizer with hyper-parameters:  $\eta = 2 \times 10^{-4}, \ \beta_1 = 0.9, \ \beta_2 = 0.999, \ \varepsilon = 1 \times 10^{-8}$
  - L2 regularization and Dropout set to 0
  - L1 norm used in loss functions
- Center-crops of images to fit the network input size

<sup>a</sup>Code available at

https://github.com/snt-robotics/camera\_relocalization



Outline of experiments

### Outline of experiments

- 2 datasets: 7Scenes and new Airframe dataset
- 2 loss functions
  - Naive Homoscedastic (NH)
  - Quaternion Error Homoscedastic (QEH)
- 3 models: Regressor, Spatial-LSTM, Temporal-GRU
- 4 CNN models for feature extraction
  - GoogLeNet-ImageNet
  - GoogLeNet-Places365
  - InceptionResNetV2-ImageNet
  - VGG16-Hybrid1365



### Example images from 7Scenes dataset





Fire





Office





Pumpkin Maciej Marcin ŻURAD



Red kitchen





Stairs

13-12-2017

-



# Experimental evaluation

### 7Scenes dataset summary

|             | # im  | ages | Spatial                 | # train                   |  |  |
|-------------|-------|------|-------------------------|---------------------------|--|--|
| Scenes      | Train | Test | Extent [m]              | images per m <sup>3</sup> |  |  |
| Chess       | 4000  | 2000 | $3 \times 2 \times 1$   | 667                       |  |  |
| Fire        | 2000  | 2000 | 2.5 	imes 0.5 	imes 1   | 1600                      |  |  |
| Heads       | 1000  | 1000 | $2 \times 0.5 \times 1$ | 1000                      |  |  |
| Office      | 6000  | 4000 | 2.5 	imes 2 	imes 1.5   | 800                       |  |  |
| Pumpkin     | 4000  | 2000 | 2.5 	imes 2 	imes 1     | 800                       |  |  |
| Red Kitchen | 7000  | 5000 | $4 \times 3 \times 1.5$ | 389                       |  |  |
| Stairs      | 2000  | 1000 | 2.5 	imes 2 	imes 1.5   | 267                       |  |  |



### Experimental evaluation Airframe dataset



p = (0.801, -1.214, 1.625)q = (0.005, 0.017, 0.769, 0.639)

p = (0.798, -1.796, 1.628)q = (0.003, 0.018, 0.788, 0.615)





p = (2.262, -0.985, 1.629)q = (-0.005, 0.011, 0.972, 0.234)

Maciei Marcin ŻURAD

Deep Learning for Camera Relocalization

13-12-2017



7Scenes dataset

### Airframe dataset summary

| airframe-mixed |  |
|----------------|--|
|----------------|--|

airframe-ind

|            | # im  | lages | # images |      |  |  |  |
|------------|-------|-------|----------|------|--|--|--|
|            | Train | Test  | Train    | Test |  |  |  |
| Position 1 | 3301  | 918   | 4219     | 0    |  |  |  |
| Position 2 | 1451  | 1087  | 2538     | 0    |  |  |  |
| Position 3 | 1733  | 809   | 2542     | 0    |  |  |  |
| Position 4 | 1120  | 385   | 1505     | 0    |  |  |  |
| Position 5 | 2002  | 670   | 2672     | 0    |  |  |  |
| Position 6 | 3792  | 1628  | 0        | 5420 |  |  |  |
| Sum        | 13399 | 5497  | 13476    | 5420 |  |  |  |
| Total      | 18896 |       |          |      |  |  |  |



**7Scenes results** 

### Median performance on 7Scenes dataset

| Data cot | Method           | GoogLeNet-ImageNet |                 | GoogLeNet-Places365 |                 | Inception-ResNet-V2 |                 | VGG16-Hybrid1365 |               |
|----------|------------------|--------------------|-----------------|---------------------|-----------------|---------------------|-----------------|------------------|---------------|
| Duiu Soi | Method           | position           | orientation     | position            | orientation     | position            | orientation     | position         | orientation   |
|          | Spatial-LSTM,QEH | 0.157m             | 6.95°           | 0.177m              | 6.41°           | 0.164m              | 7.36°           | 0.148m           | 5.261°        |
| 0        | Spatial-LSTM,NH  | 0.159m             | 9.85°           | 0.243m              | 8.21°           | 0.162m              | 72.07°          | 0.137m           | 7.868°        |
| Cliess   | Regressor,QEH    | 0.196m             | 7.21°           | 0.203m              | 6.53°           | 0.197m              | 7.78°           | 0.188m           | 5.805°        |
|          | Regressor,NH     | 0.166m             | 9.73°           | 0.183m              | 9.45°           | 0.209m              | 13.32°          | 0.197m           | 8.157°        |
|          | Spatial-LSTM,QEH | 0.325m             | 12.72°          | 0.331m              | 13.14°          | 0.344m              | 15.28°          | 0.272m           | <b>10.62°</b> |
| Fire     | Spatial-LSTM,NH  | 0.342m             | 15.49°          | 0.346m              | 38.08°          | 0.333m              | 37.49°          | 0.281m           | 35.42°        |
|          | Regressor,QEH    | 0.321m             | 12.92°          | 0.362m              | 15.01°          | 0.354m              | 16.03°          | 0.432m           | 12.88°        |
|          | Regressor,NH     | 0.319m             | 38.05°          | 0.379m              | 35.96°          | 0.365m              | $40.16^{\circ}$ | 0.459m           | 15.95°        |
|          | Spatial-LSTM,QEH | 0.365m             | 12.99°          | 0.392m              | 13.57°          | 0.345m              | 14.69°          | 0.336m           | 11.79°        |
| Stairs   | Spatial-LSTM,NH  | 0.363m             | 43.06°          | 0.390m              | 12.15°          | 0.350m              | 11.92°          | 0.330m           | 44.32°        |
|          | Regressor,QEH    | 0.424m             | 14.80°          | 0.406m              | 14.11°          | 0.346m              | 15.05°          | 0.388m           | 13.12°        |
|          | Regressor,NH     | 0.434m             | $12.07^{\circ}$ | 0.419m              | $40.68^{\circ}$ | 0.361m              | 11.70°          | 0.461m           | 13.28°        |











### Median performance on Airframe dataset

| Data set       | Method           | GoogLeN  | let-ImageNet   | GoogLeNet-Places365 |                 | Inception-ResNet-V2 |                | VGG16-Hybrid1365 |             |
|----------------|------------------|----------|----------------|---------------------|-----------------|---------------------|----------------|------------------|-------------|
| Data Set       | wethou           | position | orientation    | position            | orientation     | position            | orientation    | position         | orientation |
|                | Spatial-LSTM,QEH | 0.193m   | 3.85°          | 0.279m              | 5.39°           | 0.196m              | 3.76°          | 0.184m           | 4.22°       |
| airframe-mixed | Spatial-LSTM,NH  | 0.259m   | $5.69^{\circ}$ | 0.292m              | $9.88^{\circ}$  | 0.273m              | 5.13°          | 0.229m           | 5.66°       |
| anname-mixeu   | Regressor,QEH    | 0.264m   | 3.91°          | 0.350m              | 5.82°           | 0.194m              | 3.37°          | 0.229m           | 3.97°       |
|                | Regressor,NH     | 0.350m   | 6.75°          | 0.399m              | 12.40°          | 0.265m              | 5.86°          | 0.286m           | 7.06°       |
|                | Temporal-GRU,QEH | 0.340m   | 7.06°          | 0.476m              | 9.67°           | -                   | -              | 0.247m           | 7.67°       |
|                | Temporal-GRU,NH  | 0.437m   | $8.68^{\circ}$ | 0.691m              | 12.07°          | -                   | -              | 0.367m           | 53.55°      |
| airframe-ind   | Spatial-LSTM,QEH | 0.328m   | 7.39°          | 0.545m              | 10.41°          | 0.282m              | 5.28°          | 0.268m           | 5.16°       |
|                | Spatial-LSTM,NH  | 0.418m   | 13.44°         | 0.627m              | 14.97°          | 0.366m              | 9.76°          | 0.356m           | 10.29°      |
|                | Regressor,QEH    | 0.444m   | 7.95°          | 0.673m              | $10.78^{\circ}$ | 0.287m              | 4.63°          | 0.415m           | 5.92°       |
|                | Regressor,NH     | 0.708m   | 11.43°         | 0.906m              | $17.09^{\circ}$ | 0.391m              | $6.78^{\circ}$ | 0.439m           | 50.12°      |







Saliency maps for 7Scenes and Airframe

# Saliency maps $[\nabla_I f(I; \theta)]$ for 7Scenes and airframe-ind datasets trained on Spatial-LSTM,QEH using VGG16-Hybrid1365



Maciej Marcin ŻURAD

Deep Learning for Camera Relocalization

State-of-the-Art comparison for 7Scenes dataset

### State-of-the-Art comparison for 7Scenes

| 7Scenes     | PoseNet <sup>[1]</sup> | Walch et al <sup>[3]</sup> | PoseNet <sup>[2]</sup>  | This work                |  |  |
|-------------|------------------------|----------------------------|-------------------------|--------------------------|--|--|
|             | ( $\beta$ weight)      | Spatial LSTM               | Learn $\sigma^2$ Weight | Spatial-LSTM,QEH         |  |  |
| Chess       | 0.32m, 6.60°           | 0.24m, 5.77°               | 0.14m, <b>4</b> .50°    | <b>0.137</b> m, 7.868° * |  |  |
| Fire        | 0.47m, 14.0°           | 0.34m, 11.9°               | <b>0.27</b> m, 11.8°    | 0.272m, <b>10.62</b> °   |  |  |
| Heads       | 0.30m, 12.2°           | 0.21m, 13.7°               | 0.18m, 12 <b>.</b> 1°   | <b>0.164</b> m, 14.79°   |  |  |
| Office      | 0.48m, 7.24°           | 0.30m, 8.08°               | 0.20m, 5.77°            | 0.212m, 7.83°            |  |  |
| Pumpkin     | 0.49m, 8.12°           | 0.33m, 7.00°               | 0.25m, 4.82°            | 0.264m, 18.33°           |  |  |
| Red Kitchen | 0.58m, 8.34°           | 0.37m, 8.83°               | 0.24m, 5.52°            | 0.291m, 7.04°            |  |  |
| Stairs      | 0.48m, 13.1°           | 0.40m, 13.7°               | 0.37m, <b>10.6</b> °    | <b>0.336</b> m, 11.79°   |  |  |

\* Naive-Homoscedastic (NH)

<sup>1</sup> Kendall et al. [ICCV 2015] - PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization

<sup>2</sup> Kendall et al. [CVPR 2017] - Geometric Loss Functions for Camera Pose Regression with Deep Learning

<sup>3</sup> Walch et al. [ICCV 2017] - Image-based localization using LSTMs for structured feature correlation



### Outline

Introduction

Deep Learning for Camera Relocalization

Experimental evaluation

Conclusions



## Conclusions

### Conclusions

- We achieved competitive and sometimes outperforming results while using significantly less computation power
- VGG16-Hybrid1365 is the best choice for the CNN
- The novel quaternion homoscedastic (QEH) loss function vastly improves position and orientation prediction
- The new Airframe dataset is very challenging, but has interesting applications in Robotics
- Temporal models require a lot of computational power and data, although have much higher potential compared to standard models

## Future work



### Future work

- Obtaining a measure of uncertainty together with pose prediction
- Finetuning the whole network as opposed to just a part of it
- Further investigation of temporal GRU models



# Thank you for your attention

Maciej Marcin ŻURAD

Deep Learning for Camera Relocalization

13-12-2017 37/37

## Outline



### Appendix



Predicted trajectories

Top-down view of predicted trajectories on **airframe-ind** dataset using **Spatial-LSTM,QEH** with VGG16-Hybrid1365



Maciej Marcin ŻURAD

Deep Learning for Camera Relocalization

### Background Hyperparameter Search





### Grid Search vs Random Search, Bergstra et al. [NIPS 2011]



### Background Artificial Neural Networks



### Background Artificial Neural Networks



### Fully-connected Layer (FC)

- simplest neural network
- activation is usually ReLU: f(x) = max(x, 0)
- matrix multiplication followed by an element-wise activation:

$$\mathbf{y} = f(\mathbf{W}\mathbf{x}) = f(\sum_{k=1}^{m} w_{ik} x_{ki} + b_i)$$



### Background Training



Stochastic Gradient Descent **Require:** Training dataset  $T = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$ **Require:** Neural network as function  $f(x; \theta_t)$  with  $\theta_0$  as initial parameters **Require:** Loss function  $\mathcal{L}(x, y)$ **Require:** Learning rate  $\eta$  and batch-size *m* 1:  $t \leftarrow 1$ 2: while stopping criterion not met do Shuffle T 3: 4·  $i \leftarrow 1$ while  $i \leq N$  do 5. Compute network output for j = i, ..., max(i + m - 1, N):  $\hat{y}^{(j)} = f(\mathbf{x}^{(j)}; \boldsymbol{\theta}_i)$ 6. Compute gradient estimate:  $\hat{g} \leftarrow \frac{1}{m} \sum_{j} \nabla_{\theta_{i}} \mathcal{L}(\hat{y}^{(j)}, y^{(j)})$ 7. 8. Update network parameters:  $\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} - \eta \hat{\boldsymbol{g}}$  $t \leftarrow t+1$ 9: 10:  $i \leftarrow i + m$ end while 11: 12: end while

### Background Training (continued)



### Adam optimizer

- per-parameter adaptive with a leaky counter v<sub>t</sub>
- momentum *m<sub>t</sub>* helps smooth noisy gradient
- bias correction for first few updates due to 0 initialization
- very good convergence without the need for heavy finetuning of η

$$m_{t} = \beta_{1}m_{t-1} + (1 - \beta_{1})\hat{g}$$

$$v_{t} = \beta_{2}v_{t-1} + (1 - \beta_{2})\hat{g} \odot \hat{g}$$

$$\hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}}$$

$$\hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$$

$$\boldsymbol{\theta}_{t} = \boldsymbol{\theta}_{t-1} - \eta \frac{\hat{m}_{t}}{\sqrt{\hat{v}_{t}} + \varepsilon}$$



### Background Convolutional Neural Networks (CNN)

### **Convolutional Neural Network**

- excellent for processing data with grid-like topology e.g. images
- parameter sharing allows for processing high-dimensional data
- composed of convolution (conv) and pooling (pool) layers





### Background Convolution Layer

### **Convolution Layer**

- accepts input with size  $x \times y \times d$  and outputs  $x_o \times y_o \times n$  size
- performs convolutions on the input tensor for each filter
- resulting activation maps are stacked along depth dimension
- ► hyper-parameters are: # filters (n), filter size (f<sub>x</sub>, f<sub>y</sub>), strides (s<sub>x</sub>, s<sub>y</sub>) and padding (p<sub>x</sub>, p<sub>y</sub>)





### Background Pooling Layers

### Pooling Layer

- accepts input with size  $x \times y \times d$  and outputs  $x_o \times y_o \times d$  size
- reduces spatial dimensionality
- the reduction operation is usually max or average
- ► hyper-parameters are: type of operation, window size (w<sub>x</sub>, w<sub>y</sub>), strides (s<sub>x</sub>, s<sub>y</sub>)





### Background Recurrent Neural Networks (RNN)

### **Recurrent Neural Networks**

- offer persistence of information between time-steps using loops
- overcome the limitation of processing fixed-sized inputs
- more challenging to train than regular neural networks
- turing-complete





### Background Vanilla RNN

### Vanilla RNN

- simplest RNN
- vanishing and exploding gradient problem
- unable to learn long-term dependencies

$$\boldsymbol{h}_t = tanh(\boldsymbol{W}_{hh}\boldsymbol{h}_{t-1} + \boldsymbol{W}_{xh}\boldsymbol{x}_t + \boldsymbol{b})$$



### Background Long-short Term Memory

# Long-short Term Memory (LSTM)

- much better at learning long-term dependencies
- gating mechanism allows for uninterrupted gradient flow
- adds cell state, which acts as memory
- 4 times more parameters than Vanilla RNN

$$f_{t} = \sigma(W_{f}x_{t} + U_{f}h_{t-1} + b_{f})$$

$$i_{t} = \sigma(W_{i}x_{t} + U_{i}h_{t-1} + b_{i})$$

$$o_{t} = \sigma(W_{o}x_{t} + U_{o}h_{t-1} + b_{o})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot tanh(W_{c}x_{t} + U_{c}h_{t-1} + b_{c})$$

$$h_{t} = o_{t} \odot tanh(c_{t})$$







### Background Gated Recurrent Unit

### Gated Recurrent Unit (GRU)

- variant of LSTM
- only 2 gates: reset r<sub>t</sub> and update z<sub>t</sub>
- 2 times less parameters than LSTM
- does not need as much data and time for training





Trajectories on airframe-mixed - Position 6



Top-down view of predicted trajectory on **airframe-mixed** dataset using **Spatial-LSTM,QEH** with VGG16-Hybrid1365









#### Faculty of Sciences, Technology and Communication

# Experimental evaluation



















Airframe dataset results with Temporal-GRU model

### Airframe summary results with Temporal-GRU model

| Data cot   | Method           | median |       | mae   |       | max   |       | std   |       |
|------------|------------------|--------|-------|-------|-------|-------|-------|-------|-------|
| Data Set   | Wethou           | pos    | orien | pos   | orien | pos   | orien | pos   | orien |
| GoogLeNet  | Temporal-GRU,QEH | 0.340  | 7.059 | 0.485 | 8.512 | 2.698 | 33.96 | 0.412 | 5.382 |
| ImageNet   | Temporal-GRU,NH  | 0.437  | 8.68  | 0.565 | 11.79 | 3.426 | 174.1 | 0.434 | 11.90 |
| GoogLeNet  | Temporal-GRU,QEH | 0.476  | 9.67  | 0.567 | 11.90 | 2.100 | 49.00 | 0.345 | 7.76  |
| Places365  | Temporal-GRU,NH  | 0.691  | 12.07 | 0.805 | 18.98 | 2.763 | 178   | 0.451 | 21.37 |
| VGG16      | Temporal-GRU,QEH | 0.247  | 7.67  | 0.378 | 8.48  | 1.592 | 32.40 | 0.310 | 5.00  |
| Hybrid1365 | Temporal-GRU,NH  | 0.367  | 53.55 | 0.443 | 62.86 | 1.701 | 179.8 | 0.271 | 37.28 |