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Introduction
Problem Statement

The Task
Camera relocalization, also known as image-based localization, is
defined as the task of determining the location of a given image in
an arbitrary coordinate frame.
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Introduction
Problem Statement (continued)

Basic camera relocalization
Each image x ∈ I is processed independently in order to predict a
6-DOF pose y = (ypos ∈ R3, yrot ∈ SO(3)) = f (x).

Temporal camera relocalization

A sequence of N images x(1), . . . , x(N) taken at a constant rate is
processed jointly to predict: y(1), . . . , y(n) = f (x(1), . . . , x(N)).
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Introduction
Related Work

Approaches to camera relocalization
I fiducial markers based localization

I markers usually not present in the environment
I prone to blur, occlusion and illumination

I sparse feature based localization
I rely on SIFT or ORB-like features
I only work well in a controlled environment
I do not scale with the spatial extent of the environment
I computationally expensive

I traditional machine learning methods
I deep learning methods
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Introduction
Machine Learning vs Deep Learning
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Introduction
What is deep learning?

Deep Learning
I a class of Machine Learning methods
I focuses on representation learning
I employs deep neural networks (DNN)
I scales very well with the amount of training data
I successful on a variety of difficult problems
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Introduction
Why deep learning for camera relocalization?

Deep Learning for Camera Relocalization
I end-to-end training without the need to hand-craft features
I constant space and time complexity at test-time
I camera intrinsics are not required
I robust to blur, occlusion, texture-less surfaces and varying

lighting conditions
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Maciej Marcin ŻURAD Deep Learning for Camera Relocalization 13-12-2017 8 / 37



Introduction Deep Learning for Camera Relocalization Experimental evaluation Conclusions

Deep Learning for Camera Relocalization
Camera Relocalization as Regression

Camera Relocalization as Regression
I Given a training dataset of image-pose pairs:

Xtrain = {(x(1),y(1)), . . . ,(x(n),y(n))}
I We train a model ŷ = f (x;θθθ), which regresses 6-DOF poses

directly from image pixels
I The output prediction ŷ = (ŷpos ∈ R3, ŷrot ∈ R4) is composed of

position and quaternion
I Models are composed of a pretrained CNN followed by a

secondary regression model
I We use a multi-task loss function to learn position and attitude

prediction at the same time
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Deep Learning for Camera Relocalization
Related Work - Weighted loss function

Naive weighted loss, Kendall et al. [ICCV 2015]

L = Lpos +βLrot

Lpos = ‖x− x̂‖p, Lrot =

∥∥∥∥∥q− q̂
‖q̂‖

∥∥∥∥∥
p

I β is a hyper-parameter, which balances the importance
between position and attitude loss

I Predicted quaternion q̂ is normalized to force it to a valid
rotation in 3D space

I Searching for optimal β is expensive
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Deep Learning for Camera Relocalization
Related Work - Homoscedastic uncertainty based loss function

Homoscedastic uncertainty loss, Kendall et al. [CVPR 2017]
I Homoscedastic uncertainty does not depend on the data and

captures the uncertainty of the task itself.
I Loss for each task contains trainable parameter σ .

Lσ = Lposσ̂
−2
pos + log σ̂

2
pos + Lrotσ̂

−2
rot + log σ̂

2
rot

I For improved numerical stability, we learn ŝ← log σ̂2.

Lσ = Lpos e−ŝpos + ŝpos + Lrot e−ŝrot + ŝrot

I We call this loss function Naive Homoscedastic (NH)
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Deep Learning for Camera Relocalization
Proposed loss function - Quaternion error loss function

Quaternion error based loss, This work
I Difference between two rotation in 3D space is defined as:
	 : SO(3)×SO(3) 7→ R3, which returns a vectorial difference
θθθ ∈ R3 defined on quaternions as:

θθθ = log
(
q−1⊗ q̂

)
logq = qv

arctan(‖qv‖,qw)

‖qv‖
≈ qv

qw

(
1− ‖qv‖2

3q2
w

)
≈ qv 7−−−→

θ 7→0
0

Lrot = ‖ log
(
q−1⊗ q̂

)
‖p

I We combine this with homoscedastic uncertainty loss
→→→ Quaternion Error Homoscedastic (QEH)
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Deep Learning for Camera Relocalization
Transfer Learning

Transfer Learning
I We leverage Transfer Learning and compare performance on 4

different CNN models
I All FC layers and auxiliary branches are removed
I The output of a CNN is a feature vector passed in to a second

model

Im
ag

eN
et

Plac
es

36
5

Hyb
rid

13
65

Non-frozen layers Total
params

Trainable
params Input size Output size

GoogLeNet ××× ××× last 3
Inception modules

∼ 31.5% ∼ 6M ∼ 3.3M 224×224×3 1×1024

Inception ResNet V2 ××× last 10 Inception
ResNet blocks

∼ 11.4% ∼ 54.3M ∼ 23.5M 299×299×3 1×1536

VGG16 ××× last 3
Conv layers

∼ 23% ∼ 14.7M ∼ 7.1M 224×224×3 1×512
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Deep Learning for Camera Relocalization
Transfer Learning - VGG16 architecture

VGG16 architecture
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Deep Learning for Camera Relocalization
Transfer Learning - GoogLeNet architecture

Inception module
GoogLeNet architecture
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Deep Learning for Camera Relocalization
Transfer Learning - Inception ResNet V2 architecture

Basic residual block
Inception ResNet V2 architecture
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Deep Learning for Camera Relocalization
Regressor model

Regressor model
I Based on PoseNet, Kendall at al. [ICCV 2015]
I Images are fed through the frozen layers of the network and the

output is stored
I Only the non-frozen layers from CNN are instantiated for training
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Deep Learning for Camera Relocalization
Spatial-LSTM model

Spatial-LSTM model
I Based on Walch et al. [ICCV 2017]
I Same as Regressor model, but intermediate spatial LSTMs are

inserted for better structured feature correlation
I 4-way scanning of the reshaped feature vector
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Deep Learning for Camera Relocalization
Temporal-GRU model

Temporal-GRU model
I Based on VidLoc,

Clark et al.
[CVPR 2017]

I Employs
bidirectional GRUs
instead of LSTMs

I Poses are jointly
regressed from
sequences of
images
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Experimental evaluation
Training methodology

Training methodology
I Implemented using Keras and TensorFlowa

I Trained on GeForce GTX 950 with 2GB of VRAM
I Random hyper-parameter search:

I Adam optimizer with hyper-parameters:
η = 2×10−4, β1 = 0.9, β2 = 0.999, ε = 1×10−8

I L2 regularization and Dropout set to 0
I L1 norm used in loss functions

I Center-crops of images to fit the network input size
aCode available at

https://github.com/snt-robotics/camera_relocalization
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Experimental evaluation
Outline of experiments

Outline of experiments
I 2 datasets: 7Scenes and new Airframe dataset
I 2 loss functions

I Naive Homoscedastic (NH)
I Quaternion Error Homoscedastic (QEH)

I 3 models: Regressor, Spatial-LSTM, Temporal-GRU
I 4 CNN models for feature extraction

I GoogLeNet-ImageNet
I GoogLeNet-Places365
I InceptionResNetV2-ImageNet
I VGG16-Hybrid1365
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Experimental evaluation
7Scenes dataset

Example images from 7Scenes dataset

Chess Fire Heads Office

Pumpkin Red kitchen Stairs
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Experimental evaluation
7Scenes dataset

7Scenes dataset summary

# images Spatial
Extent [m]

# train
Scenes Train Test images per m3

Chess 4000 2000 3×2×1 667
Fire 2000 2000 2.5×0.5×1 1600
Heads 1000 1000 2×0.5×1 1000
Office 6000 4000 2.5×2×1.5 800
Pumpkin 4000 2000 2.5×2×1 800
Red Kitchen 7000 5000 4×3×1.5 389
Stairs 2000 1000 2.5×2×1.5 267
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Experimental evaluation
Airframe dataset

Airframe dataset positions

Position 1 Position 2 Position 3
p = (−0.405,2.355,1.621) p = (0.616,2.980,1.623) p = (1.799,1.165,1.625)

q = (−0.010,0.014,0.870,−0.493) q = (0.013,−0.012,−0.707,0.707) q = (−0.007,0.022,0.983,−0.182)

Position 4 Position 5 Position 6
p = (0.801,−1.214,1.625) p = (0.798,−1.796,1.628) p = (2.262,−0.985,1.629)

q = (0.005,0.017,0.769,0.639) q = (0.003,0.018,0.788,0.615) q = (−0.005,0.011,0.972,0.234)
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Experimental evaluation
7Scenes dataset

Airframe dataset summary

airframe-mixed airframe-ind
# images # images

Train Test Train Test
Position 1 3301 918 4219 0
Position 2 1451 1087 2538 0
Position 3 1733 809 2542 0
Position 4 1120 385 1505 0
Position 5 2002 670 2672 0
Position 6 3792 1628 0 5420
Sum 13399 5497 13476 5420
Total 18896
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Experimental evaluation
7Scenes results

Median performance on 7Scenes dataset

Data set Method GoogLeNet-ImageNet GoogLeNet-Places365 Inception-ResNet-V2 VGG16-Hybrid1365
position orientation position orientation position orientation position orientation

Chess

Spatial-LSTM,QEH 0.157m 6.95◦ 0.177m 6.41◦ 0.164m 7.36◦ 0.148m 5.261◦

Spatial-LSTM,NH 0.159m 9.85◦ 0.243m 8.21◦ 0.162m 72.07◦ 0.137m 7.868◦

Regressor,QEH 0.196m 7.21◦ 0.203m 6.53◦ 0.197m 7.78◦ 0.188m 5.805◦

Regressor,NH 0.166m 9.73◦ 0.183m 9.45◦ 0.209m 13.32◦ 0.197m 8.157◦

Fire

Spatial-LSTM,QEH 0.325m 12.72◦ 0.331m 13.14◦ 0.344m 15.28◦ 0.272m 10.62◦

Spatial-LSTM,NH 0.342m 15.49◦ 0.346m 38.08◦ 0.333m 37.49◦ 0.281m 35.42◦

Regressor,QEH 0.321m 12.92◦ 0.362m 15.01◦ 0.354m 16.03◦ 0.432m 12.88◦

Regressor,NH 0.319m 38.05◦ 0.379m 35.96◦ 0.365m 40.16◦ 0.459m 15.95◦

Stairs

Spatial-LSTM,QEH 0.365m 12.99◦ 0.392m 13.57◦ 0.345m 14.69◦ 0.336m 11.79◦

Spatial-LSTM,NH 0.363m 43.06◦ 0.390m 12.15◦ 0.350m 11.92◦ 0.330m 44.32◦

Regressor,QEH 0.424m 14.80◦ 0.406m 14.11◦ 0.346m 15.05◦ 0.388m 13.12◦

Regressor,NH 0.434m 12.07◦ 0.419m 40.68◦ 0.361m 11.70◦ 0.461m 13.28◦
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Experimental evaluation
Cumulative histograms
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Experimental evaluation
Cumulative histograms
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Maciej Marcin ŻURAD Deep Learning for Camera Relocalization 13-12-2017 29 / 37



Introduction Deep Learning for Camera Relocalization Experimental evaluation Conclusions

Experimental evaluation
Airframe dataset

Median performance on Airframe dataset

Data set Method GoogLeNet-ImageNet GoogLeNet-Places365 Inception-ResNet-V2 VGG16-Hybrid1365
position orientation position orientation position orientation position orientation

airframe-mixed

Spatial-LSTM,QEH 0.193m 3.85◦ 0.279m 5.39◦ 0.196m 3.76◦ 0.184m 4.22◦

Spatial-LSTM,NH 0.259m 5.69◦ 0.292m 9.88◦ 0.273m 5.13◦ 0.229m 5.66◦

Regressor,QEH 0.264m 3.91◦ 0.350m 5.82◦ 0.194m 3.37◦ 0.229m 3.97◦

Regressor,NH 0.350m 6.75◦ 0.399m 12.40◦ 0.265m 5.86◦ 0.286m 7.06◦

airframe-ind

Temporal-GRU,QEH 0.340m 7.06◦ 0.476m 9.67◦ − − 0.247m 7.67◦

Temporal-GRU,NH 0.437m 8.68◦ 0.691m 12.07◦ − − 0.367m 53.55◦

Spatial-LSTM,QEH 0.328m 7.39◦ 0.545m 10.41◦ 0.282m 5.28◦ 0.268m 5.16◦

Spatial-LSTM,NH 0.418m 13.44◦ 0.627m 14.97◦ 0.366m 9.76◦ 0.356m 10.29◦

Regressor,QEH 0.444m 7.95◦ 0.673m 10.78◦ 0.287m 4.63◦ 0.415m 5.92◦

Regressor,NH 0.708m 11.43◦ 0.906m 17.09◦ 0.391m 6.78◦ 0.439m 50.12◦
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Experimental evaluation
Cumulative histograms

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Absolute Position Error [m]

0.0

0.2

0.4

0.6

0.8

1.0
Empirical CDF for airframe-ind trained on VGG16-Hybrid1365

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH

0 10 20 30 40 50 60 70
Absolute Anglular Error [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Regressor,NH

Regressor,QEH

Spatial-LSTM,NH

Spatial-LSTM,QEH
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Experimental evaluation
Saliency maps for 7Scenes and Airframe

Saliency maps [∇I f (I;θ)] for 7Scenes and airframe-ind datasets trained on
Spatial-LSTM,QEH using VGG16-Hybrid1365

Original Guided
Backprop SmoothGrad Overlaid
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Experimental evaluation
State-of-the-Art comparison for 7Scenes dataset

State-of-the-Art comparison for 7Scenes

7Scenes PoseNet[1] Walch et al[3] PoseNet[2] This work
(β weight) Spatial LSTM Learn σ2 Weight Spatial-LSTM,QEH

Chess 0.32m, 6.60◦ 0.24m, 5.77◦ 0.14m, 4.50◦ 0.137m, 7.868◦ ?

Fire 0.47m, 14.0◦ 0.34m, 11.9◦ 0.27m, 11.8◦ 0.272m, 10.62◦

Heads 0.30m, 12.2◦ 0.21m, 13.7◦ 0.18m, 12...1◦ 0.164m, 14.79◦

Office 0.48m, 7.24◦ 0.30m, 8.08◦ 0.20m, 5.77◦ 0.212m, 7.83◦

Pumpkin 0.49m, 8.12◦ 0.33m, 7.00◦ 0.25m, 4.82◦ 0.264m, 18.33◦

Red Kitchen 0.58m, 8.34◦ 0.37m, 8.83◦ 0.24m, 5.52◦ 0.291m, 7.04◦

Stairs 0.48m, 13.1◦ 0.40m, 13.7◦ 0.37m, 10.6◦ 0.336m, 11.79◦

? Naive-Homoscedastic (NH)
1 Kendall et al. [ICCV 2015] - PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocaliz-
ation
2 Kendall et al. [CVPR 2017] - Geometric Loss Functions for Camera Pose Regression with Deep Learning
3 Walch et al. [ICCV 2017] - Image-based localization using LSTMs for structured feature correlation
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Maciej Marcin ŻURAD Deep Learning for Camera Relocalization 13-12-2017 34 / 37



Introduction Deep Learning for Camera Relocalization Experimental evaluation Conclusions

Conclusions

Conclusions
I We achieved competitive and sometimes outperforming results

while using significantly less computation power
I VGG16-Hybrid1365 is the best choice for the CNN
I The novel quaternion homoscedastic (QEH) loss function vastly

improves position and orientation prediction
I The new Airframe dataset is very challenging, but has

interesting applications in Robotics
I Temporal models require a lot of computational power and data,

although have much higher potential compared to standard
models
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Future work

Future work
I Obtaining a measure of uncertainty together with pose

prediction
I Finetuning the whole network as opposed to just a part of it
I Further investigation of temporal GRU models
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Thank you for your attention

Maciej Marcin ŻURAD Deep Learning for Camera Relocalization 13-12-2017 37 / 37



Appendix

Outline

Appendix
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Appendix

Experimental evaluation
Predicted trajectories

Top-down view of predicted trajectories on airframe-ind dataset using
Spatial-LSTM,QEH with VGG16-Hybrid1365
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Appendix

Background
Hyperparameter Search

Grid Search vs Random Search, Bergstra et al. [NIPS 2011]
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Appendix

Background
Artificial Neural Networks

(a) Biological neuron (b) Mathematical model
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Appendix

Background
Artificial Neural Networks

Fully-connected Layer (FC)
I simplest neural network
I activation is usually ReLU:

f (x) = max(x,0)
I matrix multiplication

followed by an element-wise
activation:

y = f (Wx) = f (
m

∑
k=1

wikxki +bi)
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Appendix

Background
Training

Stochastic Gradient Descent
Require: Training dataset T = {(x(1),y(1)),(x(2),y(2)), . . . ,(x(N),y(N))}
Require: Neural network as function f (x;θθθ t) with θθθ 0 as initial parameters
Require: Loss function L(x,y)
Require: Learning rate η and batch-size m

1: t⇐ 1
2: while stopping criterion not met do
3: Shuffle T
4: i⇐ 1
5: while i≤ N do
6: Compute network output for j = i, . . . ,max(i+m−1,N): ŷ(j) = f (x(j);θθθ t)
7: Compute gradient estimate: ĝ⇐ 1

m ∑
j
∇θθθ tL(ŷ(j),y(j))

8: Update network parameters: θθθ t⇐ θθθ t−1−η ĝ
9: t⇐ t+1

10: i⇐ i+m
11: end while
12: end while
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Appendix

Background
Training (continued)

Adam optimizer
I per-parameter adaptive with a

leaky counter vt

I momentum mt helps smooth
noisy gradient

I bias correction for first few
updates due to 0 initialization

I very good convergence without
the need for heavy finetuning of
η

mt = β1mt−1 +(1−β1)ĝ
vt = β2vt−1 +(1−β2)ĝ� ĝ

m̂t =
mt

1−β t
1

v̂t =
vt

1−β t
2

θθθ t = θθθ t−1−η
m̂t√
v̂t + ε
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Appendix

Background
Convolutional Neural Networks (CNN)

Convolutional Neural Network
I excellent for processing data with grid-like topology e.g. images
I parameter sharing allows for processing high-dimensional data
I composed of convolution (conv) and pooling (pool) layers

Maciej Marcin ŻURAD Deep Learning for Camera Relocalization 13-12-2017 8 / 22



Appendix

Background
Convolution Layer

Convolution Layer
I accepts input with size x× y×d and outputs xo× yo×n size
I performs convolutions on the input tensor for each filter
I resulting activation maps are stacked along depth dimension
I hyper-parameters are: # filters (n), filter size (fx, fy), strides (sx,sy)

and padding (px,py)

xo =
x− fx +2px

sx
+1

yo =
y− fy +2py

sy
+1

Maciej Marcin ŻURAD Deep Learning for Camera Relocalization 13-12-2017 9 / 22



Appendix

Background
Pooling Layers

Pooling Layer
I accepts input with size x× y×d and outputs xo× yo×d size
I reduces spatial dimensionality
I the reduction operation is usually max or average
I hyper-parameters are: type of operation, window size (wx,wy),

strides (sx,sy)

xo =
x−wx

sx
+1

yo =
y−wy

sy
+1
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Appendix

Background
Recurrent Neural Networks (RNN)

Recurrent Neural Networks
I offer persistence of information between time-steps using loops
I overcome the limitation of processing fixed-sized inputs
I more challenging to train than regular neural networks
I turing-complete
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Appendix

Background
Vanilla RNN

Vanilla RNN
I simplest RNN
I vanishing and exploding gradient problem
I unable to learn long-term dependencies

ht = tanh(Whhht−1 +Wxhxt +b)
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Appendix

Background
Long-short Term Memory

Long-short Term Memory
(LSTM)

I much better at learning
long-term dependencies

I gating mechanism allows for
uninterrupted gradient flow

I adds cell state, which acts as
memory

I 4 times more parameters
than Vanilla RNN

ft = σ(Wf xt +Uf ht−1 +bf )

it = σ(Wixt +Uiht−1 +bi)

ot = σ(Woxt +Uoht−1 +bo)

ct = ft� ct−1 + it� tanh(Wcxt +Ucht−1 +bc)

ht = ot� tanh(ct)
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Appendix

Background
Gated Recurrent Unit

Gated Recurrent Unit (GRU)
I variant of LSTM
I only 2 gates: reset rt and

update zt

I 2 times less parameters than
LSTM

I does not need as much data
and time for training
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Appendix

Experimental evaluation
Trajectories on airframe-mixed - Position 6
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Top-down view of predicted trajectory on airframe-mixed dataset using
Spatial-LSTM,QEH with VGG16-Hybrid1365
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Appendix

Experimental evaluation
Cumulative histograms
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Appendix

Experimental evaluation
Cumulative histograms
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Appendix

Experimental evaluation
Cumulative histograms
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Appendix

Experimental evaluation
Cumulative histograms
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Appendix

Experimental evaluation
Cumulative histograms
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Experimental evaluation
Cumulative histograms
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Appendix

Experimental evaluation
Airframe dataset results with Temporal-GRU model

Airframe summary results with Temporal-GRU model

Data set Method median mae max std
pos orien pos orien pos orien pos orien

GoogLeNet
ImageNet

Temporal-GRU,QEH 0.340 7.059 0.485 8.512 2.698 33.96 0.412 5.382
Temporal-GRU,NH 0.437 8.68 0.565 11.79 3.426 174.1 0.434 11.90

GoogLeNet
Places365

Temporal-GRU,QEH 0.476 9.67 0.567 11.90 2.100 49.00 0.345 7.76
Temporal-GRU,NH 0.691 12.07 0.805 18.98 2.763 178 0.451 21.37

VGG16
Hybrid1365

Temporal-GRU,QEH 0.247 7.67 0.378 8.48 1.592 32.40 0.310 5.00
Temporal-GRU,NH 0.367 53.55 0.443 62.86 1.701 179.8 0.271 37.28
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