Poznan University of Technology
Faculty of Computer Science

Institute of Computer Science

Bachelor’s thesis

DESIGN AND IMPLEMENTATION OF COMMUNICATION
PROTOCOLS FOR SELF-ORGANIZING MULTI-HOP AD HOC
NETWORKS USING XBEEPRO-868 PLATFORM

Amadeusz Juskowiak, 106453
Tomasz Kuczma, 106548
Mateusz Rybarski, 106572

Maciej Zurad, 106537

Supervisor

Professor Jerzy Brzezinski

Poznan, 2015

Temat
pracy dyplomowej inzynierskiej
nr

Politechnika Poznanska

Wydziat Informatyki
Instytut Informatyki

Studia stacjonarne I stopnia

Kierunek: Informatyka
Specjalnosé: -

Zobowiazuj¢/zobowigzujemy si¢ samodzielnie wykonaé pracg w zakresie wyspecyfikowanym nizej. Wszystkie elementy (m.in. rysunki, tabele, cytaty, programy
komputerowe, urzadzenia itp.), ktore zostana wykorzystane w pracy, a nie bgda mojego/naszego autorstwa bgda w odpowiedni sposob zaznaczone i bedzie podane zrodto

ich pochodzenia.
_ Imig i nazwisko Nr albumu Data i podpis
Student: Amadeusz Juskowiak 106453
Student: Tomasz Antoni Kuczma 106548
Student: Mateusz Rybarski 106572
Student: ~ Maciej Marcin Zurad 106537

Tytut pracy:

Projekt i implementacja protokotéw komunikacyjnych dla samoorganizujacych si¢ wieloetapowych sieci ad
hoc z uzyciem platformy sprzgtowej XbeePRO-868

Wersja angielska
tytutu:

Design and implementation of communication protocols for self-organizing multi-hop ad hoc networks using
XbeePRO-868 platform

Dane wyjsciowe:

Literatura na temat bezprzewodowych mobilnych sieci ad hoc. Literatura, standardy oraz dokumentacja
techniczna protokotow routingu dla bezprzewodowych i mobilnych sieci ad hoc. Dokumentacja techniczna
dla platformy sprzgtowej XbeePRO-868

Projekt protokotéw komunikacyjnych wraz z dowodami ich poprawnosci; implementacja protokotow w

Zakres pracy: jezyku C++; przygotowanie platformy sprzgtowej oraz testy efektywnosciowe opracowanych rozwigzan.
Miejsce
prowadzenia Instytut Informatyki Politechniki Poznanskiej
prac:
Termin oddania 5 o1 55y
pracy:
Promotor: prof. dr hab.inz. Jerzy Brzezinski

Z-ca Dyrektora Instytuty Informatyki

ds

Ksztalcenia

A
H Maricll 7ol i : n 71
dr kab. inZ. Maci [wf@u préf. nadzw.
/ k e K/ ,
rektor Instytutu
> " Dziekan
Poznan,

Miejscowos¢, data

Acknowledgements

Foremost, we would like to express our sincere gratefulness to Prof. Jerzy Brzeziniski for his guid-
ance, motivation and immense knowledge. His counselling helped us during research and writing
of this thesis.

Besides our supervisor, we are pleased to thank all the members of Distributed Systems Group,
especially Dr. Michat Kalewski. Without them this thesis would not have come into being. We
could not forget about thanking the rest of Poznan University of Technology community. Over
the years, their mentoring was inevitable process which consolidated our life goals.

Moreover, we would like to thank two companies, Amano Interactive and Chembus, for the
inspiration and generous support.

Last but not least, we feel need to express gratitude to our parents, families and friends. They

did believe in us and their labour formed each of us as beings capable of expressing themselves.

The scientific man does not aim at an immediate result. He

does not expect that his advanced ideas will be readily taken up.

His work is like that of the planter — for the future.
His duty is to lay the foundation for those who are to come,

and point the way.

NIKOLA TESLA

Abstract

Wireless ad hoc networks consists of autonomous hosts which have equal status within a network.
Unlike managed wireless networks, ad hoc networks are decentralized, there is no pre existing
structure. Each host can participate in routing by forwarding packets. Decentralized nature of ad
hoc networks makes them more reliable than managed wireless networks, because failure of one
host does not cause failure of whole network. This feature makes them also more suitable for some
kinds of applications, like sensoric networks.

Message delivery protocols are fundamental for applications that use the network, especially
when it comes to sending messages to host that is not directly accessible. Assuming that hosts
can be spread over a large area and distance between any pair of adjacent hosts can be large,
temporary failures of links and network topology changes should be taken into account. This
makes delivery guarantee a hard problem. Another problem is to provide self-organising network.
Joining to network should be as simple as possible and maintaining topology should happen in
automatic way.

In context of the above observations, in this thesis we propose new communication protocols
that provide self-organizing networks and try to ensure delivery of messages between any pair
of hosts in a network. Moreover, we provide sample implementation of these protocols. Firstly,
motivation and available solutions are shown, then designed protocols are described in Chapter 2.
Chapters 3 and 4 contain detailed description of provided implementation of protocols and sample
applications respectively. Then, in Chapter 5, different kinds of tests have been carried out.

Test results confirmed that provided solutions and implementation are in line with expectations

and assumptions.

Contents

1 Introduction

2 Project concept

2.1 Basisof operation
2.1.1 Data types, variables, operations and events
2.1.2 Network topology discovery
2.1.3 Network topology maintenance
2.1.4 Packet routing
2.1.5 Ensuring deliveryo

2.2 Proof of correctness
2.2.1 Assumptions
2.2.2 Special cases
2.2.3 Proving correctness of the protocol L0

3 Project

3.1 Infrastructure L
3.1.1 XBeePro-868 radio module 0oL
3.1.2 Control system

3.2 Software implementation L oL o
3.2.1 Building process e
3.2.2 Datastructures Lo
3.23 Driver oL e
3.24 Dispatcher
3.25 Router e
3.2.6 Simulator

3.3 Testing process
3.3.1 Unit testing L

3.3.2 Behaviour testing

4 Sample applications

4.1
4.2
4.3
44

Echo
Temperature reading . .
Console
Possible areas of usage .
4.4.1 Sport timing . .

4.4.2 Sensoric networks

5 Performance evaluation

© o N ot ot W

11
13
13
13
14

17
17
17
21
23
24
25
33
37
40
42
49
49
50

53
53
54
95
o7
o7
o7

59

II

5.1.1 Tests environment

5.1.2 Results visualization

5.1 Methodology
5.2 Topology discovery,
53 Loadtesting.
54 Spike testing L Lo
5.5 Harsh environment testing
5.6 Summaryo e

6 Conclusions

6.1 Comparing to existing solutions

6.2 Furtherresearch

A Performance evaluation dataset

Bibliography

Contents

Chapter 1

Introduction

In recent years there is a growing demand for wireless communication, mostly caused by an increas-
ing number of mobiles devices, such as smartphones, tablets, smart watches and home automation
appliances. Lately these devices has got more popular, due to technological advances in hardware
that resulted in lower prices and therefore more accessibility. Usually communication between
those devices is achieved with the help of Internet, to which they connect through a wireless or
cellular network. On the other hand direct communication is rarely used, even if a group of devices
is in close neighbourhood. This solution has its advantages, such as limited responsibility. The
mere thing they are responsible for is handling the communication with a device connecting it to
the Internet. However, the massive disadvantage comes from relying on this provided infrastruc-
ture, which when fails then no communication can be performed. In order to not depend on any

pre-established infrastructure another approach for enabling communication is needed.

One well described solution could be an ad hoc network [Per08]. Ad hoc is a Latin phrase
for “Formed for or concerned with specific purpose”, “Improvised and often impromptu” [Dicll].
Ad hoc network is a decentralized network, where every device connected to it has the same
responsibilities and can act both as a client and server simultaneously. Ad hoc networks can be
divided into two categories single-hop and multi-hop, single-hop implies that the communication
between two hosts is done without the help of intermediate hosts, while multi-hop network allows
for communication assisted by intermediate hosts. Such a network has a possibility of having a
much greater geographical span compared to a single-hop approach, because two hosts do not need
to be in transmission range. However, there are substantial consequences of this approach. Now
each host is responsible for routing traffic between other hosts. This demands all hosts to posses
knowledge about the current network topology, but since it is decentralized network, it brings all

the problems that can appear in distributed system.

Another form of comparing different ad hoc networks is to look at how they handle topology
changes. A self-organizing [Poo00] network reacts to those alterations without any assistance, it
automatically discovers new hosts willing to join the network as well as drops the hosts that are not
responding. These differences are then flooded [LKO01] throughout the network to ensure that all
hosts inside the network are notified about the changes. In this thesis a self-organizing multi-hop
ad hoc network is studied. Since ad hoc networks are usually deployed on small wireless devices,
they usually have plenty of limitations on resources such as battery power, bandwidth, CPU’s
computational power and memory capacity. These constraints have to be taken into account,

while designing such networks.

As a result of being independent from any pre-established infrastructure, ad hoc networks

find many applications. One example is military, which nowadays uses computers extensively in

1

2 Introduction

battlefields. Because of this, features like fault tolerance and on demand setup are of utmost
importance, and therefore the use of ad hoc networks for army purposes is widely studied [JJV08].
It is worth nothing that in case of army application, an important assumption of high mobility
has to be included. Ad hoc networks where each node can move without any constraints is known
as MANET [BRGY99], an abbreviation for mobile ad hoc network. Another excellent example
of application that would greatly benefit from ad hoc approach is post disaster relief. In this
case, there is also close to zero infrastructure availability, caused by flood, earthquake or other
catastrophic event. Yet another application for instance is wireless sensor network monitoring
gas pipes that are spread across a country, where access to cellular network can be limited or
impossible. Further adoptions worth mentioning are gaming on portable devices, ubiquitous flea
market [SNS03] as well as assistance during official meetings. More mobile games nowadays feature
multi-player modes allowing to play with friends nearby. With the use of ad hoc network, rather
than connecting to a server on the Internet, players can create a single-hop ad hoc network and
communicate that way. A ubiquitous flea market is a concept, where users could buy and sell
items. As they walk, application would search inside the network for an item match, and upon
match request users to make a physical contact. Official meetings or school classes can also take
advantage of ad hoc technology. People can easily exchange data within a network, that would be
created dynamically just for this purpose. Of course security is something that has to be considered.
Finally, Internet of Things (1oT) is a raising area of research. Its intention is to create a massive
network of inter connected devices using existing infrastructure such as Internet. However, over the
last decade use ad hoc networks was investigated to supplement the Internet [RTB*13]. The word
Things from the definition refers to broad range of devices, including heart monitoring implants,
energy management sensing and actuation systems, home automation systems and environment
monitoring systems. These are just a few examples from a wide group of real world applications.

When studying currently available products based on ad hoc network, it can be observed that
the market is still in its infancy. Moreover, there exist a number of available solutions to different
problems that rely on existing infrastructure. Combining those two facts allows for creating a
product, which would not only innovate, but could also compete with a lower price. One example
of it, would be a modern timing system used in different sport events, such a marathons and
triathlons. Main task of this system is to exchange data between points placed within the race
route. These points would collect timestamps of each participant passing by. Data would be
aggregated in real-time at a single node in order to calculate intermediate and lap times as well as
reveal any cheaters. In already existing solutions data is sent by GPRS modules (for an extra fee
paid to GSM operator). Therefore, not only it depends on the infrastructure, but also generates
more costs associated with data transfers. Developing a modern timing system built with ad hoc
network as its base for communication, would therefore be more resistant to failures and additional
redundancy would increase this resistance even further. Data transfer costs can also be removed
depending on the type of communication used between two adjacent nodes. Using a publicly
available frequency band is an example of this. There is currently no timing system on the market,
which is based on ad hoc approach. The reason for this is mostly due to the fact that creating such
product comes with more responsibilities. Finally, it is the software or hardware of the device that
is responsible for routing packets throughout the network, since there is no existing infrastructure.
Moreover, ad hoc networks face many other problems such as security and manufacturing a final
product that clients would be happy with is not an easy task. However, for a timing system,
weaker assumptions can be made, which greatly simplify the design of the network, for instance:
predefined shared key required to join network and no network mobility.

That being said, motivation for this thesis came precisely from observing the market of cur-

Introduction 3

rent timing systems and noticing that an ad hoc approach could seriously disrupt it. Therefore,
the goal of this thesis is to design and implement communication protocols that implement self-
organizing multi-hop long distance ad hoc network. Long distance means that it allows for a long
distance communication between two adjacent nodes. Together with multi-hop feature of the net-
work, it implies that the network can have an immense geographical span. Consequently, these
protocols would fit extremely well as a core of a modern timing system used in sport competi-
tions, where gap between two points can be large. In order to support long range communication,
radio modules from Digi International [Digl5], namely XBeePro series were chosen as a base for
transmission. There are two available models, which operate on two different frequencies. First
one being XBeePro-868, that uses 868MHz frequency and the second, XBeePro-900 that works on
900MHz frequency. The latter one implements a proprietary mesh network protocol, where each
node acts as a router [JS03]. However, in Europe there is legal problem. European Union directive
87/372/EWG [Eur09, Eurll] does not allow public access on 900MHz frequency. In that case to
create mesh network using XBeePro in Europe it is necessary to implement own multi-hop ad hoc
network and use XBeePro-868 [Digl4b).

Knowing the hardware, the network is going to operate on, following assumptions were made in
order to reduce complexity of the project. No network mobility, which otherwise would complicate
routing and discovery protocols. Security of the network that relies on the hardware and users,
meaning XBeePro-868 modules are responsible for encryption and that only authorized people
know the password. Therefore, this network could not be used for applications that involve public
access, because the protocol does not solve typical security problems such as Man-in-the-Middle and
Denial of Service attacks [HBCO1]. Another important assumption concerns network partitions.
Partition occurs if during operation of network there exist two nodes without a path. In the design
of the protocol it is assumed that permanent network partition cannot arise.

After determining assumptions, these functional and non-functional requirements were defined
to ensure that the designed protocols could be used in different applications, for instance previously
described timing system or for that matter any data collecting system, that would have static
nodes (node with no mobility). First important functional requirement is that system shall handle
topology changes. Meaning new nodes joining the network shall get notified about current network
topology and vice versa. It also implies that temporary failures of nodes or links will be noticed
and propagated throughout the network as well. Second functional requirement concerns packet
delivery, and it states that the protocol shall deliver a packet sent from node A to node B eventually.
However, it can deliver the same packet more than once. On the other hand non-functional
requirements are qualities of the system. One requirement for the implementation of the protocol
is to be portable for all POSIX! compliant operating systems with access to essential dependencies.
Second quality requirement is to abstract and hide routing from the end user of network. Another
non-functional requirement, which is partially coupled with the previous one, is to provide an API?
of end-point to end-point packet transmission to the end user.

The thesis was written with the following structure. In Chapter 2, general project concept is
discussed. Starting with the description of data types and variables that the protocol is using.
Then each part of the protocol is explained. Consisting of network topology maintenance and dis-
covery, as well as packet routing and mechanism that try to ensure packet delivery. The chapter
ends with proof of correctness for the described protocol. Chapter 3 contains a sample implemen-

tation of the protocol discussed in the previous chapter. It begins with detailed explanation of the

IPOSIX is abbreviation for Portable Operating System Interface and is an operating system compatibility
standard
2API stands for Application Programming Interface

4 Introduction

chosen hardware that is directly responsible for radio communication. It also shows the control
system platform that actually runs the implementation, giving a rundown of multiple choices for
such control system. Next, the implementation itself is described. Exact modules responsible
for different tasks such as communication with the radio hardware, providing API for the user,
routing itself are illustrated. After simulator used for performance analysis is also described. At
the end testing methodology applied during development process is also explained. Next, Chapter
4 discusses sample applications of the implemented protocol using provided API. It shows 3 differ-
ent applications: echo, temperature reading and console together with detailed implementations.
Finally, other possible areas of usage are mentioned. Chapter 5 focuses on evaluating performance
of the protocol implementation with regards to network size, topology and environment. It starts
with assessing complexity of topology discovery process. Afterwards, load and spike testing is
described and performed. Then, harsh environment testing is conducted. Finally, analysis of all
results is carried out. Eventually, summary of the study is discussed in Chapter 6.

In this work, specific tasks were divided among the group. Implementation of the protocol was
assigned to three people: Tomasz Kuczma, Mateusz Rybarski and Maciej Zurad. The design of
the protocol was also split into parts. Delivery guarantee was done by Tomasz Kuczma and Ma-
teusz Rybarski, while discovery and maintenance of topology was designed by Amadeusz Juskowiak.
Routing of packets was developed by Amadeusz Juskowiak. Last part of the protocol, proof of
correctness was completed by Maciej Zurad. Network simulator and its further integration with
various tools was done by Amadeusz Juskowiak and Mateusz Rybarski. While integration, perfor-
mance and reliability tests together with fixtures were conducted by Tomasz Kuczma. Software
engineering issues and unit testing were solved by Tomasz Kuczma and Maciej Zurad. Finally,
implementation of sample applications was done by Mateusz Rybarski, however the driver for the

end user was designed and implemented by Amadeusz Juskowiak.

Chapter 2

Project concept

In following chapter, general concept of communication protocols provided in this thesis is de-
scribed. Then correctness of various properties of these protocols are proven. In context of proto-
cols and algorithms operating with network, there is a need to choose network representation used
in this thesis. Because of nature of designed protocols, where in every pair of adjacent nodes, both
of them have to see each other to make communication possible, undirected graph G = (V, E) is

chosen. This graph consists of a set of nodes V and a set of edges E.

2.1 Basis of operation

This section describes basis of operation and algorithms used in designed protocols. Following
subsections show how topology of the network is discovered and maintained, how packets with
data sent by user applications are routed within the network and how the protocols try to ensure
delivery of these packets. Firstly, there is a need to define data types, operations and events used

in designed protocols.

2.1.1 Data types, variables, operations and events

Following operations, events and data types are used in designed protocols.

Data types

Pseudocode 1 shows data types used in protocols. It is worth to notice, that data field of DATA
packet type is not fully defined here. This type depends on implementation details, so its full
definition is omitted here. Different implementations can send via network different types of data.

Variables

At every node, variables from pseudocode 2 are defined. self represents node itself. In addition,
every node contains graph that represents its knowledge about the state of the network. In the
rest of this chapter, it will be named local network. Inside pseudocodes, G stands for whole local
network, V stands for a set of known nodes, E stands for a set of edges known to given node.

Operations

Operations that take argument of type PACKET can also take argument of any type that extends
PACKET.

e add_node(node : NODE) — adds node to graph that represents local network,

5

Project concept

Pseudocode 1: Data types used in protocols

type NODE : Integer; /* Unique identifier of node */
type EDGE is array[1..2] of Node; /* Represents edge between two nodes */
type EDGE_PARAMETERS is record of

good : Integer; /* Parameters of given edge */

retries : Integer;
errors : Integer;

end
type PATH is list of NODFE ; /* The path of a packet */
/* types of packets sent between nodes */

type PACKET is record of

|

/* Base type of packets used in algorithms */

end

type NODE_BROADCAST extends PACKET is record of
| node : NODE;

end

type GRAPH extends PACKET is record of

| edges : list of EDGE;

end

type EDGE_DROP extends PACKET is record of

| edge : EDGE;

end

type DATA extends PACKET is record of

id : Integer; /* unique identifier of packet */
source : NODE;

destination : NODE;

data : ... ; /* data sent between nodes */
visited : list of NODE;

end

ype ACK extends PACKET is record of

id : Integer; /* identifier of corresponding DATA packet */
status : Integer;

path : PATH,

params : list of EDGE_PARAMETERS

end

-+

Pseudocode 2: Variables defined at every node

self : NODE;
packet_history : map of (DATA, timestamp);

e remove_node(node : NODE) — removes node from graph that represents local network,

e add_edge(a : NODE, b : NODE) — adds edge from a to b to graph that represents local

network,
e add_edge(edge : EDGE) — adds edge to graph that represents local network,
e remove_edge(edge : EDGE) — removes edge from graph that represents local network,

e calculate_antireliability(G) — calculates reliability of edges in given graph, described

in packet routing section,

e path(source : NODE, destination : NODE) : PATH — obtains and returns shortest path

from source to destination in graph G,

2.1. Basis of operation 7

calculate_timeout(path : PATH) : Timestamp — calculates and returns timeout for ac-

knowledgement packet for given path,

e history_remove(id : Integer) — finds and removes from packet_history entry for packet

with given id,

e history_find(id : Integer) : DATA — finds in packet_history and returns entry for
packet with given id,

deliver(receiver : NODE, packet : DATA) — delivers packet of type DATA from current

node to node Receiver

e receive(sender : NODE, packet : PACKET) — receives packet at current node from node

Sender

e send(receiver : NODE, packet : PACKET) — sends packet from current node to adjacent

node Receiver,
e broadcast(packet : PACKET) — sends packet from current node to every adjacent node.

e error(message : String) — reports error to application, used only when there is no route

to destination,

e process(data) — process data by application.

Events

Events that take argument of type PACKET can also take argument of any type that extends
PACKET.

e e¢_timeout_expires(packet : DATA) —occurs when timeout for given DATA packet expires,

e ¢_antireliability_exceeds(edge : EDGE) — occurs when antireliability for given edge

becomes too high,

e e_receive(sender : NODE, packet : PACKET) — occurs when receive operation is in-

voked at current node,

e ¢_deliver(receiver : NODE, packet : DATA) — occurs when deliver operation is in-

voked at current node.

2.1.2 Network topology discovery

To provide self-organizing network, topology has to be discovered at the beginning of operation.

Solving this problem is divided into two steps:
e Informing visible nodes that new node wants to join the network,
e Informing rest of the network about new node and edges in the network.

To join the network, new node broadcasts packet of type NODE_BROADCAST. This packet
contains identifier of broadcasting node that is unique. If any other node receives this packet,
e_receive(sender : NODE, packet : NODE_BROADCAST) event occurs and procedure from pseu-
docode 3 is executed on the receiving node. Node received in this packet and edge from this node

to itself is added, unless existing in the graph that represents local knowledge of the network. If

8 Project concept

Pseudocode 3: Receiving NODE_BROADCAST packet event handler

when e_receive(sender : NODE, packet : NODE_BROADCAST):

if node ¢ V then

| add_node(packet.node);

end

if {self, packet.node} ¢ E then
add_edge(self, packet.node);
p-graph : GRAPH;
p-graph.nodes := get_edges();
broadcast(p_graph);

end

end

the edge was added, every edge in the graph is broadcasted using packet of type GRAPH. GRAPH
packet contains information about every edge that is known to broadcasting node. When packet of
type GRAPH is received, e_receive(sender : NODE, packet : GRAPH) occurs and procedure
from pseudocode 4 is executed. Edges from the packet are merged with local network graph. If it

has changed, new packet of type GRAPH is broadcasted with current graph.

Pseudocode 4: Receiving GRAPH packet event handler

when e_receive(sender : NODE, packet : GRAPH):
change : Bool;
change := False;
foreach edge : packet.edges do
if edge ¢ F then
add_edge(edge);
change := True;

end

end

if change = True then
p-graph : GRAPH,;
p-graph.nodes := get_edges();
broadcast(p_graph);

end

end

2.1.3 Network topology maintenance

After discovering topology, it is needed to ensure that nodes are still able to deliver packets via

edges in graph and nodes are still working. This is done in two steps:
e Removing faulty edges from graph,
e Rediscovering nodes and edges in case of temporary breakdown.

Firstly, when antireliability measure for given edge exceeds threshold value (antireliability mea-
sure is described widely in Packet routing section), e_antireliability_exceeds(edge : EDGE)
event occurs and code from procedure shown in pseudocode 5 is executed. Packet of type EDGE_DROP
is broadcasted to inform other nodes, that given edge should be removed from graph because there

is a possibility undelivering packet using this edge.

2.1. Basis of operation 9

Pseudocode 5: Handling e_antireliability_exceeds event

when e_antireliability_exceeds(edge : EDGE):
p-edge_drop : EDGE_DROP;
p-edge_drop.edge := edge;
broadcast(p_edge_drop);

end

When packet of type EDGE_DROP is received, e_receive(sender : NODE, packet : EDGE_DROP)
event occurs (pseudocode 6). The received edge is removed from the graph. If it was removed suc-
cessfully, the EDGE_DROP packet is broadcasted again from current node. Otherwise, edge was
deleted earlier or have never existed for this node and EDGE_DROP packet is not broadcasted.
This operation allows to remove faulty edges in whole network. If node without any edge exists in

the network, it should be removed locally from graph.

Pseudocode 6: Receiving EDGE_DROP packet event handler

when e_receive(sender : NODE, packet : EDGE_DROP):
if edge € E then
remove_edge(packet.edge);

p-edge_drop : EDGE_DROP;
p-edge_drop.edge := packet.edge;
broadcast(p-edge_drop);

if A{a,b} € E : packet.edge[l] = a V packet.edge[l] = b then
remove_node(packet.edge[1]);

end

if A{a,b} € E : packet.edge[2] = a V packet.edge[2] = b then
remove_node(packet.edge[2]);

end

end

end

Secondly, once in a while, from every node packet of type NODE_BROADCAST is broadcasted
and procedure similar to topology discovering is happening in the network. This allows rediscov-
ering nodes and edges if they were removed from graph in case of broadcasting EDGE_DROP
packet.

2.1.4 Packet routing

As mentioned at the beginning of this chapter, network is represented by undirected weighted
graph. Packet routing determines shortest path in this graph, from packet source node to packet
destination node. Important thing is that following rules are applied only for packets of type
DATA. These packets contains addresses of source and destination nodes, data that needs to be
delivered and list of visited nodes by packet.

Following subsections describe how antireliability measure used as weights on edges is calcu-
lated, how packet is delivered to destination node and how parameters used to calculate antirelia-

bility measure on edges are updated with acknowledgement packets.

Antireliability measure

Network is represented by undirected weighted graph, where antireliability measure acts as edge

weight. This measure is a real number greater than or equal to 0. Greater the measure is, reliability

VIV 24K Jo josped 1 yyed paure)jqo Amau e 9pou JSIy 0] Juss ST eiep Ym 1a3ord ‘Spremisijy
‘'Sopou pajIsiA Apeal[e ploar 0} SulfI}) ‘pourelqo SI 9pou UOIJRUIISOP 0} 9POU JULLIMD WoIj Yjed
pu® 9pOU JUSLIND JB POJRN[RAS 9IR SOINSBIW A[IQRI[DIIUR ‘OPOU JUOLIND Ym pojepdn st joxoed

Ul POIO)S SOPOU PAIISIA JO IST] ‘OPOU 9IRIPAULIIUI UO PAAIdAI ST Y.}/ 2dA) Jo josped Uaypn

pua
puo
puo
{(uoryeuIISAp 07 9INOI ON],)I0LId ‘
os[o
{(yped ‘gseryyed-yoe-d)puos
‘pogisiatjoyored =: yred-yoed
Jres =: snyes-ype-d
‘prjeyoed =: prype-d
SOV : yoed
usyy () # paprsa1aond Ji
os[a
pue
{(y ‘yoxpred)ppeLiogsy |
uay} fjas = 224n0s39yo0d I
{(yed)inostury-oremored =: 3§
‘dureysowury, : 3
‘(3oxpored ‘s yyed)puos

uayy () # yivd I
‘(19A19001 ‘Jos)yyed =: yred
‘HIVJ : yred
(D) ATiqrerpaIiue-9)RMOTed
(VIVA : 104o0d ‘SGAON © 4902909.4)4202)9p~0 USYM
I9[PURY JUSAD IOAT[OP ® i), 9PO20PNasd

*), opooopnoesd ur umoys st sseooxd
SIy, -Iede] uoryeordde 0} pesrer aq PMoOYs Ioime Iodord ‘SInoo0 UOIRN)IIS Yons J| 'Opou JUSLIND
WOJ S([ISS800RUI ST UOTIRUIISOP sueawt Jey [, ‘A1duwe oq [[im paureiqo yred ey ‘Aiqissod st a1o7 T,
‘ed peurejqo uo opou 9)sIy 0} Jues st joxped Yy ‘Apyuenbesqng -s)ySem 93pe sk soInsesw
Ayrpiqrerpanyue Yamm [6¢lig] wystosdre yyed 31seg10ys s,e13sY (1T SuIsn PauR}qoO ST OPOU UOTJRUIISOD
07 9pou 90Inos wol Yjred oY) ‘U], ‘9A0QR PIqLIISOD se Ydeld o) Ul 98ps AIoAd I0] pajenores

ST 9INSELaW A}IQRI[IIJUR Ue ‘OPOU UOIYRUI)SIP 0} 9pou 90INn0s wodj jasped Y[/(7 pPuss 0} Iapio Uuf

AIDAI[OP j1932ed

I+adoon — iy
(1 +8y0ouYH) * SHIY LAY

(1)
‘paje[nored
SI 98Pd ULAIS I0J W}/ SINSeaUl A[IQRI[PII)UR MOY SMOUS T'g uorpenbry ‘T AQ Jsed] je poseaIdul

ojourered GHTYy LAY soyew Ivjowrered GYOYYH JO 9seaIdul AIoAd Jey) ‘9o1j0u 0} [lIoM SI 9]
"98pe ueAId uo sjased JO SOLIPI JO ISQUINU SOUIULISIOP YOIYM SHTYLHY ®
‘98P0 UOATS FuIsn s1a30ed POISAIPPUN JO IOQUINU SOUINLISIOPD UOTYUM SYOYYH ®
‘08pe ueAlsd Sursn sjosped PAILAIPP JO IOqUINU SOUTULISIDP UDIUM (JOOL ©

;qders o) ur o8pe A10Ad I10J Palo)s siojewrered U0 pase(ST UOIJRN[RAS dINSRIUW A[IQRI[DIIJUY

“IOMO[ST 93Po UOAILS JO

1d20u09 399L04 01

2.1. Basis of operation 11

reaches its destination, acknowledgement packet is sent back to the source node and received data

can be processed by node. This process is presented in pseudocode 8.

Pseudocode 8: Receive DATA packet event handler

when e_receive(sender : NODE, packet : DATA):
if self = packet.destination then

p-ack : ACK;

p-ack.id := packet.id;

p-ack.status := 0;

p-ack.path := packet.visited;
send(p_ack.path.last, p_ack);

process(packet.data);

else

packet.visited.add(self);

deliver(self, packet.destination, packet);

end

end

Acknowledgement packets

Acknowledgement packets (packets of type ACK) are sent back from destination node to source
node, by exactly the same path the corresponding packet was delivered to the destination node.
The ACK packet contains parameters of every edge on the path of corresponding DATA packet,
which are used to update graph on intermediate and source nodes. Process of updating these
parameters strongly depends on implementation details and used hardware, so it is not widely
described in this chapter. If DATA packet could not be delivered, ACK packet contains also

information about last node which could not deliver the packet.

2.1.5 Ensuring delivery

One of main goals of this project is to try to ensure that DATA packet sent from source node will
be delivered to destination node or message with error will be send to application when packet
could not be delivered. As it is mentioned in assumptions section of first chapter, it is assumed
that packet will be delivered to its destination node, but there are cases when packet can be
delivered more than once. To aim this goal, two mechanisms are used: acknowledgement packets
and timeouts. For purpose of delivery guarantee, there is a need to remember at every node, every

packet that was sent or was transmitted . This is remembered in packet_history.

Acknowledgement packets

Acknowledgement packets are very important to delivery process. After DATA packet reaches
its destination, ACK packet is sent to DATA packet source node by exactly the same way corre-
sponding DATA packet was transmitted. When ACK packet reaches corresponding DATA packet
source node, this node knows that packet was delivered successfully. As it is mentioned in previous
subsection, acknowledgement packets are also used when DATA packet can not be delivered. In
this case, ACK packets contains information about node that could not deliver DATA packet to
next node. When source node receives ACK packet with such information, it knows that delivery
of DATA packet failed and this packet should be retransmitted (probably with different path, if it
is possible). Whole procedure is shown on pseudocode 9.

12 Project concept

Pseudocode 9: Receive ACK packet event handler

when e_receive(sender : NODE, packet : ACK):
update_edges_parameters();
packet.path.popback();

/* intermediate node x/
if packet.path # () then

‘ send (packet.path.last, packet);
else

/* packet undelivered */
if packet.status # 0 then
data_packet : DATA;
data_packet := history_find(packet.id);
history_remove(packet.id);
deliver(data_packet.destination, data_packet);
else
history_remove(packet.id);
end

end

end

It should be noticed that when source node of corresponding DATA packet receives ACK packet,
it should remove entry about DATA packet from packet_history. There are cases when ACK
packets can not reach source node of corresponding DATA packet. These situations are resolved

using timeouts mechanism described below.

Timeouts

As mentioned, timeouts mechanism repeats delivery process of DATA packet when corresponding
acknowledgement packet does not reach source node. For every outgoing packet, receipt time of

corresponding acknowledge packet is calculated. Equation 2.2 shows how this time is calculated:

RETRIES,
T =2¢- de 1 ty 2.2
¢ EZSE ((+maa;{Goom—1—2ETR1E§;,1})> T2 (2.2)
Where:

RETRIES, GOOD are parameters of given edge, described in antireliability measure sub-

section,

E, is a set of edges in packet path,

d. is a delay on given edge,

V, is a set of nodes in packet path,

t, is a time of processing single packet on given node
¢ is a constant greater or equal 1.

Timeout is calculated at source node of DATA packet and stored in packet_history. Action,
which takes place after timeout expires is shown on pseudocode 10. After timeout expires, DATA

packet is retransmitted (possibly with a different path) and new timeout is calculated.

2.2. Proof of correctness 13

Pseudocode 10: e_timeout_expires event handler

when e_timeout_expires(packet : DATA):
history_remove(packet.id);
deliver(packet.destination, packet);
end

2.2 Proof of correctness

The following section’s plan is to show what correctness of a protocol is and what is required to

prove such thing.

2.2.1 Assumptions

This section focuses on presenting assumptions about network and the environment that surrounds
it. Furthermore, based on these assumptions and special cases of the protocol that can appear, it
will be clear which properties the protocol has.

Critical assumptions for understanding the protocol are:

e fail-stop node [SS83] — means that the process (in this case a node) when fails, will go into
halt mode instead of executing erroneous state. This also indicates that other processes will
be able to detect that and deal with it by not trying to communicate. Fail-stop also implies
that a process will lose all state after failure, therefore it is equivalent to introducing a new

node.

e non-permanent network partitions — is a very important assumption for the correctness of
the protocol. It promises that if a network partition occurs, it will not be perpetual. A
network partition happens when a failure of a single node leads to a situation, where there

exist two correct nodes unable to communicate with each other.

e changing topology — one way of permanently changing topology is to introduce new nodes.
However, this does not provide any bad consequences unlike permanent failures, which would

highly complicate the proof of correctness.

e perfect links [CGR11] — every two adjacent nodes are in a perfect link. Meaning that if the
nodes are correct (neither sender nor receiver is down), then if one process sends a message to
its neighbour, neighbour will obtain it eventually. This property holds because of the nature
of XBeePro-868 hardware, which handles retransmits by itself, and if the receiver node is
down then it returns an error status. It also implies no duplication of messages between
those two nodes and a requirement of an originator of message. No message can be received

without it being sent first.

2.2.2 Special cases

The protocol uses acknowledgments and timeouts as a way of telling the originator of message if
it has been successfully or unsuccessfully delivered. Because of this, there is a situation, which
makes it impossible to prove that the protocol has a Reliable Delivery property [CGR11]. This
property says that if a correct process requests to send a message m to a correct process ¢, then p
eventually delivers m to q.

The situation that causes this property to fail is depicted in the figure 2.1 and is the following;:

Process p sends a message m and correctly delivers it to process g, after receiving the message

14 Project concept

Timeout [ms] Timeout expired,
... retransmit

Deliver m
1 >

p2

N\
g . S
p4 O >
p5 O >

m received, send ACK

Figure 2.1: ACK returns undelivered, after delivering message

process ¢ sends back the acknowledgment message ACK to process p. While the ACK is being
routed to originator, the network is temporary partitioned, leaving the ACK message without a
path to originator. This after some time ¢ causes timeout to expire and originator attempts to
retransmit the message again. However, the network stays partitioned and eventually originator
reports that the message has been unsuccessfully delivered. This shows that the reliable delivery
property does not hold, since reporting undelivered at the originator does not guarantee anything.
Receiving acknowledgment without error status means of course that the message has been success-
fully delivered, but that is not enough for proving Reliable Delivery. Following logical statements
2.3 show this property. It can be seen that receiving status OK implies that message was deliv-
ered. However, delivering the message does not imply that status OK will be received. Same case

applies to receiving status NOT-OK, which doesn’t imply that message was not delivered.

OK — Delivered,
—(Delivered — OK),

= Delivered - NOT_OK,
—~(NOT_OK — —Delivered),

Delivery to ACK relation (2.3)

2.2.3 Proving correctness of the protocol

To consider any distributed protocol correct requires two classes: safety and progress to be satisfied
[Lam77, ADS86]. Safety properties enforce that something cannot happen. They are used to
prevent anything bad from happening. However, only specifying safety properties is not enough,
a trivial program that does not do anything would count as correct. Therefore the second class of
progress properties is needed. Progress properties (also known in literature as liveness properties
[CGRI11]) are there to ensure that something good occurs. Moreover, these properties state that
for any time ¢, they will be fulfilled at time ¢’ > ¢.

The properties of protocol are defined in 2.1. Immediately it can be observed that Stubborn

delivery is a progress property and No creation is a safety property. Stubborn delivery is weaker

2.2. Proof of correctness 15

Table 2.1: Interface and properties of Stubborn point to point links

Module:
Name: StubbornPointToPointLinks, instance sl.

Events:
Request: (s, Send | ¢, m) : Requests to send message m to process q.
Indication: (sl, Deliver | p, m) : Delivers message m sent by process p.

Properties:

SL1: Stubborn delivery: If a correct process p sends a message m once to a correct
process ¢, then ¢ delivers m an infinite number of times.

SL2: No creation: If some process ¢ delivers a message m with a sender p, then m was
previously sent to ¢ by process p.

Multiple nodes between

msg 1
msg 2
msg 3
msg 4

msg 5 msg 1

msg 6

msg 7 msg 2

msg 8 msg 6

msg 9

msg 8

t[ms]

Figure 2.2: Stubborn Links time graph

of course than most progress properties, most notably reliable delivery. It assures that if and only
if the message m is transmitted infinite number of times from a process p, then the process ¢ will
receive it an infinite number of times. Figure 2.2 shows a time line of the same frame going through

the network, and either delivering or not delivering.

Theorem 1. If two presented properties Stubborn delivery and No creation are met, then the

whole protocol implements Stubborn Point to Point links interface.

Correctness Arguments. It is trivial to prove that the No creation property holds. Previous as-
sumption that the network is operating on perfect links, makes it very easy to say that this
property cannot be violated, since perfect links are much stronger property than e.g. fair-loss links
[CGR11] which already cover No creation property. The progress property on the other hand,
requires to look at the protocol and assumptions. Because Stubborn delivery sends a message

16 Project concept

infinite number of times, then the receiver will get also infinite number of messages. The actual
difference in number might be huge between sent and received messages, but looking at infinity it
holds. Assumption about temporary network-partitions is very important, because retransmitting
messages infinite number of times, doesn’t assure the receiver that he is also going to get infinite
number of messages. In fact if the partitions could be permanent, the property would not hold.
Obviously the protocol is not efficient if the message was received and the other side doesn’t need
it anymore. Therefore, the implementation of the protocol sends acknowledgment packets, which

stop sending the same message. This is merely an implementation detail, so it can be done. O

Chapter 3

Project

Algorithm implementation is required to study its behaviour in real life situations and perform var-
ious tests. Two distinct implementation sections can be designated — hardware-related design and
software implementation. Software implementation requires connection to physical radio device or

simulator environment.

3.1 Infrastructure

Proposed algorithm does not require any specific hardware platform, however its design process
was inspired by XBeePro-868 devices produced by Digi International Inc. Although XBeePro-
868 device provides support for point-to-point and point-to-multipoint, implementation of mesh
networking is omitted in the current radio firmware.

XBee-Pro 868 provides physical, mac and security layers upon which our network layer is
built. The radio module connects with controller (such as personal computer, embedded system
or microcontroller) using industry standard serial communication. Therefore communication in
heterogeneous computer environment is possible. It should be noticed that line-of-sight distance

between two adjacent nodes can be as long as 40 kilometers with proper antennas.

3.1.1 XBeePro-868 radio module

Digi XBeePro-868 radio module is complete radio solution for point-to-point and point-to-multipoint
communication. Essential components such as UART transceiver, radio modem and amplifier were
embedded into small footprint (figure 3.1) module. Complete module documentation is available
in manufacturer provided manual [Digl4b].

Radio amplifier transmits signal with 315mW power, which combined with built-in high signal-

to-noise receiver and proper antenna allows to create stable link over 40km line-of-sight distance.

Specification

XBeePro-868 module requires 3.3V power source capable of delivering current up to 500mA. Built-
in UART allows variety of data rates (1200 - 230400bps) to be used with communication to
controller. Overview of the parameters is available in table 3.1, however complete specification is
available in the datasheet [Diglla].

Modules implement three networking layers — physical baseband layer, mac layer and secu-
rity layer. Modules are addressed with 64-bit MAC address set by the manufacturer. Beside
that nodes need to be within same network (determined by user configurable network identifier).

Transmissions are encrypted using symmetrical AES-128 algorithm [DR91] (its support is built-in

17

18 Project
0.020"
(0.51mm)
@) = PIN 20 0.031”_ 0.110” l
® ° shield-to-PCB : NS
pin 1-7 |o o 0.080” +0.020 (0.79mm) | (2. 70mm) y]
o ol 12977 (2.03mm £0.51) 0.050” — |b
° e (32.94mm) ¢ (1.27mm) — |b
° "o 1 = =
® e LI | |Q 1 — |b
PIN 10-—=|o 0| —=——PIN 11 ﬁ ” L = |b
I A M 1
| o.160uA fp— |
- 0.866" | (4.06mm) i
(22 .00mm) 0.079” L]
0.960” (2.00mm)

Figure 3.1: XBeePro-868 mechanical drawing [Diglla]

Table 3.1: XBeePro-868 specification

Parameter | Value
Data rate | 24Kbps
Indoor range | Up to 500m
Outdoor range | Up to 40km
Transmit power | 1mW (0dBm) to 315mW (+25dBm)
Receiver sensitivity | -112dBm

Frequency band
Addressing
Encryption

868 MHz (SRD g3 Band 869.525MHz)
64-bit MAC address, 16-bit Network ID
128-bit AES

into hardware and transparent to user).

Therefore knowledge of network identifier, mac addresses

and encryption key is required to transfer and receive messages with these devices, making it quite

secure solution.

Interfacing with other electronics is conducted using 3.3V CMOS level pins. The pinout is

described in table 3.2.

Table 3.2: XBeePro-868 pinout

Pin number Type Function
1 Power 3.3V power supply
2 Output UART data output
3 Input UART data input
4 | Input/Output | GPIO
5 Input Reset trigger
6 | Input/Output | GPIO, PWM or RX signal strength indicator
7 | Input/Output | GPIO or PWM
8 | Not connected | None
9 | Input/Output | GPIO or sleep trigger
10 Power Ground

11 | Input/Output
12 | Input/Output
13 Output

14 Power

15 | Input/Output
16 | Input/Output
17 | Input/Output
18 | Input/Output
19 | Input/Output
20 | Input/Output

GPIO or analog input

GPIO or serial CTS signal

GPIO or sleep indicator

Voltage reference for analog inputs
GPIO or connection indicator
GPIO or serial RTS signal

GPIO or analog input

GPIO or analog input

GPIO or analog input

GPIO or analog input

3.1. Infrastructure 19

Table 3.3: Radio power levels

Level | Transmission power | Current
0 1mW 85mA
1 23mW 150mA
2 100mW 280mA
3 158mW 350mA
4 350mW 500mA

(a) RP-SMA connector (b) U.FL connector (c) Wire antenna

Figure 3.2: Available XBeePro-868 variants[Digl4al

Radio parameters

Radio transmitter is capable of transmitting signal up to 315mW (4-25dBm). Its power can be
limited with 5 discrete levels presented in table 3.3. Receiver is rated with -112dBm sensitivity.
Radio works in 868MHz frequency band (in specific SRD g3 Band 869.525MHz) which is available
in Europe and its usage is regulated by ETSI standard [Eurll] and EU directive [Eur09].

The module is capable to transfer data with 24Kbps data rate, however its duty cycle is
limited to 10%!. Duty cycle causes effective throughput to be limited to 2.4Kbps. Duty cycle
implementation by Digi allows to send data for 6 minutes in total in each hour. For remaining 54
minutes device is in passive mode — it can only receive frames as transmitting is disabled.

Modules are available with various antenna connectors — RP-SMA connector (figure 3.2a), U.FL
connector (figure 3.2b) or built-in wire antenna (figure 3.2¢). In total 5 devices were used during
development, four devices with RP-SMA connectors and one device with built-in wire antenna.

RP-SMA connector is more reliable than U.FL, as U.FL was designed to connect small embed-
ded antennas, while RP-SMA is industry acceptable external low-power antenna connector.

Tests were conducted using small +2dB omnidirectional antennas (figure 3.3). For large dis-
tance communication high gain antennas are required. In this case antenna specification should
be selected depending on environment and required distance. Such selection and appropriate

calculations and simulations are not part of the protocols concept.

Communication methods

XBeePro-868 requires at least four pins (power supply, ground, data input, data output) connected
to make UART connection available. Parameters of the connection such as data rate, parity, stop

bytes and flow control must be the same on the module and its controller.

Two modes of communication are available — transparent mode and API mode.

Transparent mode

IDuty cycle is limited by ETSI standard. [Eurll]

20 Project

Figure 3.3: Omnidirectional +2dB 868MHz antenna with RP-SMA connector[Fac15]

In transparent mode any bytes sent to data input pin are encapsulated automatically into frame
and sent to other XBee device. When any data are received they are decapsulated and sent to the
controller using data output pin. Therefore such two devices emulate direct serial port connection.

Devices must be configured in order to use this mode — two devices must be paired together.

API mode

API mode allows for more advanced transmissions. Controller is required to provide correct
frames into data input pin. When data are received, frame is not decapsulated — raw frame is sent
out using data output pin. Other frames can be generated internally and sent by XBee device as
response to various events.

In this mode programmer can explicitly specify destination of a frame. In similar fashion
received frames contain explicitly source mac address. This behavior is practical and it is used in

software implementation of the protocols concept.

Configuration

XBeePro-868 modules are configured using AT-inspired command set.

Commands can be entered in various ways. AT Command Mode can be entered using fol-
lowing algorithm — wait one second, enter +++, wait one second. In this mode settings can be
managed using AT syntax [Digldb, p. 16]. When module is in API mode, AT command can be
encapsulated into command frame [Digl4db, p. 38, 43]. It is possible to execute AT command on
remote XBeePro-868 module from another reachable device using remote command frame [Digl4b,
p. 42-43]. Entering AT Command Mode in API mode is still possible using the same algorithm.

Values are stored in built-in reprogrammable EEPROM memory. To replace stored values
command ATWR is required.

Assortment of parameters are configurable — comprehensive list of settings and associated AT
commands is available in the manual [Digl4b, p. 27-34]. Some of parameters are read only, an
essential one is mac address which can be read using ATSH and ATSL commands.

In order to make use devices as radio transceiver for implementation of thesis algorithm some

settings must have been changed — list of settings changed for each device is available in table 3.4.

3.1. Infrastructure 21

Table 3.4: List of changed settings

AT command | Default value New value Description
AP 0x00 0x01 Enables API mode
BD 0x03 0x07 115200bps baud rate
NI ’ 0 various Node name
EE 0x00 0x01 Enables AES encryption
KY unknown ’HelloWorld’ | Encryption key
PL 0x04 depends on test | Power level (see table 3.3)

3.1.2 Control system

XBee868-Pro can not be completely functional without control device connected to the module
using UART connection. Control system is platform for executing software implementation of the
routing algorithm. Radio module can be connected directly to the control system using UART or
using some sort of adapter if UART is not available on target. This allows variety of systems to be
used as controllers such as personal computers, embedded systems, industrial computers or even
microcontrollers.

Implementation was developed and designed to work on two platforms — embedded system and

personal computer. It is assumed both platforms are using POSIX compatible operating system.

Embedded system

Embedded system is type of computer system designed to be part of larger electronic, robotic or
mechanical system. Embedded systems implements various industrial protocols — UART, required

for communication with XBeePro-868 module, is usually built-in.

RaspberryPi

The embedded system of choice for the thesis is RaspberryPi [Rasl5]. It was not designed
as typical industrial embedded system, but small, extremely affordable computing platform. One
piece of RaspberryPi, platform capable of performing around 900MIPS [Lonl4], costs $25-$35
depending on configuration. Most recent specifications of the platform can be obtained at Rasp-
berryPi Foundation website at http://raspberrypi.org/products/.

Even if RaspberryPi was designed for consumer and educational market, it still follows principle
of embedded system. Various interfaces are available (i.e. UART, GPIO, SPI or Ethernet), however
some of them are not available in every model.

Four different models were available at time of the writing. Model B+ (visible on figure 3.4)
was chosen as it was widely available at this time, yet any model of RaspberryPi is suitable as
control system. Processor architecture of RaspberryPi is ARMv6, so ARMv6 compatible Linux
operating system is installed.

Connection

Serial port can be easily accessed on RaspberryPi. Voltage levels both on XBeePro-868 and
RaspberryPi are the same 3.3V CMOS level. Therefore it is possible to connect the devices directly
without level translator — example pin connection is provided in table 3.5. For development
purposes connection using jumper cables can be made, however for industrial or any commercial
usage proper carrier board should be designed.

Power supply on the board generates 3.3V, although only about 100mA of current is left for
external use. It is possible to power the radio from onboard power supply, however the transmission

http://raspberrypi.org/products/

22 Project

Figure 3.4: RaspberryPi Model B+ [Rasl5]

Table 3.5: Connection between RaspberryPi Model B+ and XBeePro-868

RaspberryPi XBeePro-868
Function Pin | Pin Function
3.3V power supply 111 vCC
TX signal 8|3 Data output
RX signal 10 | 2 Data input
Ground 39 | 10 Ground

power should be limited to ImW. Usage of greater transmission power requires external power
supply.

Personal computer

Personal computer is general purpose computer available for individuals. Any modern x86 platform
with POSIX operating system (such as a distribution of Linux or commercial OS X system) should
be suitable as control system for XBee module. However modern computers do not incorporate
RS-232 serial port nor UART CMOS 3.3V level serial port.

Though personal computer is ideal platform for routing application execution, usage of adapters
and protocol translators is usually required. USB is standard interface available in almost all
personal computers. There are commercially available USB to UART converters and they can be
used to connect XBeePro-868 module to the computer. In addition carrier boards specifically made

in mind of connection XBee series devices with computers using USB are commercially available.

Digi XBee Development Board

XBee devices manufacturer Digi provides complex developer board (manufacturer part number
XBIB-U-DEV) capable of communication with computer using USB (pictured in figure 3.5). Board
is supplied with external power source so usage of full transmission power is possible.

The development board can be used to check every feature of XBeePro-868 devices, however
consulting its guide [Digllb] is recommended as the thesis does not exploit every feature.

Two pieces of Digi XBee Development Board were used during testing and implementation

process of the thesis.

3.2. Software implementation 23

Figure 3.6: Sparkfun XBee Explorer Dongle[Spal3]

Sparkfun XBee Explorer Dongle

Independent manufacturer Sparkfun produces XBee Explorer Dongle (pictured in figure 3.6)[Spal3].
It is much simpler device than previously described development board — it connects directly into
USB port and drains power from it. Transmission at full power is not recommended, however it
possible, depending on USB power capabilities of the personal computer. Main advantage of this
device is price, it is 5 times cheaper than competitor’s device.

Two pieces of Sparkfun XBee Explorer Dongle were used during testing and implementation

process of the thesis.

3.2 Software implementation

The protocols proposed in the thesis are implemented in C4++11 language for POSIX platforms
(implementation was tested on Linux x86_64/arm11 and OS X x86_64 machines). C+-+11 language

24 Project

is chosen for its efficiency, low level system integration and well provided object oriented paradigm.
Compared to previous editions of the language, new features such as lambda expressions, native
threads or unordered sets simplifies overall implementation. The code is portable and works in
heterogeneous environment. Build process and dependencies retrieval is automated with Cmake,
subversion and git systems. The most recent version of toolchain is recommended, yet the software
was developed using LLVM 3.5 and G++ 4.8 compilers.

Router classes and structures are contained in PUT::CS::XbeeRouting namespace. Router

code is divided into functional sections such as:
e Driver — provides communication between network and client applications,

e Device connector — parses or serializes Frames and communicates with XBee device over

serial port,
e Router — routes Packets and maintains Network topology,
e Dispatcher — ensures delivery of Packets and keeps them in History.

Language of choice for the Simulator was Ruby 2.2 — its great standard library and flexibility
allowed to implement portable simulator code in readable manner.

Simulator code is divided into DSL? providers, low-level part, data structures and logic.

3.2.1 Building process

Code developed in the thesis is available online in git repository at https://github.com/alfanick/
xbee868-routing or https://git.amanointeractive.com/poznan-university-of-technology/
xbee868-routing-code/tree/master. It can be provided in other form upon request by any of

the authors.

Dependencies
Building process is designed to be as simple as possible and requires from user minimal dependen-

cies.

Driver and router

Essential requirements are:

e POSIX compatible operating system such as Linux 2.6+, FreeBSD 10.0+, OS X 10.5+ —

low-level system calls are based upon POSIX standards,

e C++11 compiler (clang 3.5+ — http://11lvm.org/releases/download.html#3.5 or g++
4.84 —https://gcc.gnu.org/mirrors.html) — compiler used to generate binaries for given

system,
o Cmake 2.8.8+ — http://cmake.org — portable out-of-source building system,
o Redis 2.6+ server — http://redis.io/download — publish-subscribe pattern provider,

o Git client — http://git-scm.com — distributed version control system used for thesis code

and its dependencies,

2DSL - Domain Specific Language

https://github.com/alfanick/xbee868-routing
https://github.com/alfanick/xbee868-routing
https://git.amanointeractive.com/poznan-university-of-technology/xbee868-routing-code/tree/master
https://git.amanointeractive.com/poznan-university-of-technology/xbee868-routing-code/tree/master
http://llvm.org/releases/download.html#3.5
https://gcc.gnu.org/mirrors.html
http://cmake.org
http://redis.io/download
http://git-scm.com

3.2. Software implementation 25

e Subversion client — https://subversion.apache.org — version control system used for de-

pendencies retrieval.
Following dependencies are obtained automatically by Cmake:

Hiredis — https://github.com/redis/hiredis — Redis client library for C/C++,

google-glog — https://code.google.com/p/google-glog/ — Logging library for C/C++,

googletest — https://code.google.com/p/googletest/ — C++ unit testing toolchain.

googlemock — https://code.google.com/p/googlemock/ — mocking library used in unit
testing.

Simulator
Simulator requires Ruby 2.2+ implementation (standard MRI Ruby https://www.ruby-lang.
org/en/downloads/ is recommended) with croupier-rb 2.0+ (https://github.com/croupiers/

croupier-rb) and redis-rb (https://github.com/redis/redis-rb) gems?.

Building

After obtaining source code and fulfilling essential requirements run ./configure while being
connected to the Internet. The script will generate build files for given platform. Additional
dependencies will be downloaded and built.

To build the driver, router and tests use ./build.sh — binaries will be generated inside bin/

directory.

3.2.2 Data structures

In order to truly represent processed data and simplify algorithms and their implementations
assortment of data structures must be introduced.

As the thesis covers low-level processing and data, using types which clearly specify their size
is preferred (such as uint8_t, uint16_t or uint64_t. To make code follow real world data types

some aliases were introduced as visible in table 3.6.

Table 3.6: Introduced typedefs

Type Original type Description
PacketId uint32_t Globally unique Packet identifier.
Address uint8_t Unique Node address.
Path std: :deque<Address> Packet path.
Edge Address[2] Edge in Network graph.
Destination | std::pair<float, Address> Cost to given Node.

Frame

Frame is lowest level data processed in the Router software. Frames allow standardized bidirec-
tional communication with Xbee device over serial port. XBee module manufacturer? specifies
complete API manual [Digl4b]. Frame consists of general API Frame [Digl4b, p. 35] which en-
capsulated API-Specific Data (figure 3.7).

3’gem’ is name for user provided code library in Ruby environment
4Digi International, Inc. — http://www.digi.com

https://subversion.apache.org
https://github.com/redis/hiredis
https://code.google.com/p/google-glog/
https://code.google.com/p/googletest/
https://code.google.com/p/googlemock/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://github.com/croupiers/croupier-rb
https://github.com/croupiers/croupier-rb
https://github.com/redis/redis-rb
http://www.digi.com

26 Project

Start Delimiter Length Frame Data Checksum
(Byte 1) (Bytes 23) (Bytes 4-n) (Byte n +1)
OX7E MSB LSB APl-specific Structure 1 Byte
API Identifier Identifier-specific Data
cmdID cmdData

Figure 3.7: API Frame structure[Digl4b)

Frame structure is inspired by frame specification written by the manufacturer [Digl4b]. There-
fore struct Frame exists mimicking API Frame (as seen in listing 3.1) and encapsulates union
Frame: :data consisting of API-Specific Data depending on given enum class Frame::Type. Re-

lationships between type of frames and their functions are presented in table 3.7.

Listing 3.1: Simplified Frame structure

typedef struct Frame {
// size of data union

uintl6_t length;

// identifier of data frame struct (actual type is enum class Type : uint8_t)
uint8_t type;

// encapsulated frame struct

union {...} data;

// checksum of the frame

uint8_t checksum;

}
Table 3.7: XBee frame types
Structure name Type Direction | Description
ModemStatusFrame 0x8A Response | Radio module status
CommandFrame | 0x08/0x09 | Request | AT command request
CommandResponseFrame 0x88 Response | AT command response
RemoteCommandFrame 0x17 Request | AT command request for remote
XBee device
RemoteCommandResponseFrame 0x97 Response | Remote XBee device AT command
response
TransmitFrame 0x10 Request | Simplified data transmit request
ExplicitTransmitFrame 0x11 Request | Detailed data transmit request
StatusFrame 0x8B Response | Status of last transmit request
ReceiveFrame 0x90 Response | Simplified data receipt
ExplicitReceiveFrame 0x91 Response | Details data receipt

Implementation of Router requires usage only of some of the frames:
e ModemStatusFrame — used for discovery device availability,

e CommandFrame — used for sending AT commands for configuring and managing XBee device,

3.2. Software implementation 27

CommandResponseFrame — used for AT commands response,

TransmitFrame — used for sending Packets,

StatusFrame — used for acknowledge of transmission status and its statistics,
e ReceiveFrame — used for receiving Packets.

Each TransmitFrame and StatusFrame require locally unique identifier (Metadata: :frame_id)
so they can be paired together when status for given transmission is received. Identifier is one byte
long, so total of 255 frames could be transmitted before their statuses are received (for identifier

value 0 no StatusFrame will be generated).

Serialization

Filled out Frame can be serialized to sequence of bytes using unsigned char* Frame::serialize(int
& length). Such string can be transmitted and interpreted in XBee device. Serializing method uses
memcpy call to serialize Frame: : data to sequence of bytes, yet it is important to realize differences
in byte ordering. Compiler is let know to omit memory paddings with appropriate #pragma calls.
Hence serialization is much quicker than manual conversion using separate bit operations. During
serialization, start byte Ox7E is added, length is amended accordingly and checksum is calculated.

Resulting string is compliant with XBee documentation.

Deserialization

Deserialization process is parallel to serialization. Sequence of bytes can be deserialized into
existing Frame using void Frame::unserialize(unsigned char* frame). Length of the string is deter-
mined using second and third byte, as it is a part of API Frame specification. Deserialization uses
memcpy function to insert bytes into union Frame::data, same cautions about byte ordering are
liable. After unserialization it is possible to read specific union field depending on Frame: :type

and process received data.

Packet

Packet is the only data type exchanged on network level. Packet is encapsulated as data into
ReceiveFrame or TransmitFrame when received or transmitted. Packet structure is designed in
similar manner as Frame structure (as in listing 3.2). Every packet can transmit different data
according to its type. However the data stored in union data are usually primitive types (as seen
in table 3.8).

Listing 3.2: Simplified Packet structure

struct Packet {
// packet type (implemented as enum class Type : uint8_t)
uint8_t type;

// source address (address of last visited node)

Address source;

// destination address

Address destination;

// origin address (address of first visited node)

Address origin;

28 Project

// number of quanta of data if applicable (depends on type)
uint8_t length;

// port tag associated with packet
uint8_t port;

// data depending on packet type

union {...} data;

// mac address of source

uint64_t mac;

// constant packet id generated on node where its value is 0
uint8_t packet_id = 0O;

// status used when packet is Ack (0 means delivery, other value is Address of node where error
was noticed)
Address status = 0;

// list of visited nodes during transmission of the packet
Path visited;

};
Table 3.8: Network Packet types
Type | Union field name Data type Description
Internal=0x00 frame Framex* Used to transport low-level
Frame to higher layer (usu-
ally with StatusFrame).
Data=0x01 content uint8_tx* Sequence of bytes contain-
ing message.

Ack=0x03 parameters RemoteParameters* | Array of link statistics col-
lected while routing Ack
packet.

NodeBroadcast=0xFE address Address Address of broadcasting
Node.
EdgeDrop=0xFD edge Edge Edge to be removed from
local Network.
Graph=0xFB edges Edgex* Array of Edges represent-
ing mnew links between
nodes.

Packet can be serialized into Frame encapsulating TransmitFrame using Framex Packet::to_frame
0. Serialization is done in different ways depending on Frame: :type — it is achieved using byte
operations and previously mentioned memcpy procedure where possible. Deserialization is done
in reversed way, comparably to serialization — packet can be deserialized from Frame (usually
containing ReceiveFrame) into existing Packet using Packet::Type Packet:from_frame(Frame* frame).
Constant uint64_t Frame::BROADCAST is defined and contains local broadcast address for sending

packets adjacent to local device.

Packet identifier

Packet identifier is globally unique in the network until corresponding acknowledgement packet
is received. It can be acquired using PacketId Packet::id() function.

Packet identifier is generated from destination, source and packet_id fields. Origin node sets

packet_id to generated Metadata: : frame_id which is locally unique. Therefore tuple (destination,

3.2. Software implementation 29

source, packet_id) is unique in whole network and allows to distinguish packet on any interme-

diate node.

Internal packet
Internal packet is used to encapsulate Frame so they can be analyzed in higher layers such as
Dispatcher or Router. Internal packet is generated when in Router::receive() run across Frame

different then ReceiveFrame.

Acknowledgement packet

Acknowledgement packet is sent from destination node to origin node via original packet visited
path. On each visited node struct RemoteParameters (listing 3.3 is appended to the packet.
Statistics are used to update antireliability measure on intermediate links.

It is important to notice that Packet: : packet_id for acknowledgement packet and correspond-

ing data packet are the same, so are the computed PacketId Packet::id() values.

Listing 3.3: RemoteParameters structure

struct RemoteParameters {
// destination address of the statistics
Address hop = 0;

// given transmission edge delay in miliseconds
uintl6_t delay = O;

// number of undelivered packets during given transmission

uint8_t errors = 0;

// number of packet retries on given edge

uint8_t retries = 0;

Each of parameters can max out, but never overflow. Knowledge of origin address and each of
the hops addresses allows to update antireliability measure on every intermediate link.

Other case when Acknowledgement packet is sent is when transmission error occurs — Packet: : status
represents address of last node visited. RemoteParameters are still collected, yet they do not reach

destination node.

History

History is responsible for saving data packets in memory until their acknowledgement packets are
received. If acknowledge is not received before timeout or its status is negative, retransmission of
the packet is possible without any actions from client applications. Even if retransmissions fail,
data stored in history can be used to return the message back to the sender application.
History keeps relationship between packets Metadata and their Packet: :id() and Metadata: : frame_id
(as can be seen in listing 3.4). Metadata store various parameters (listing 3.5 such as send time,
local frame identifier, timeout or retransmission counters. These values are used to control packet

routing and maintain safe delivery.

Listing 3.4: Simplified History class

class History {
private:
// map containing relationship between packet identifier and metadata

PacketsHistory packets_history;

30 Project

// map containing relationship between local frame identifier and metadata

FramesHistory frames_history;

// bitset guarding frame identifier occupation
bitset id_occupation;
public:
// add packet to history give it identifier
uint8_t watch(Packet* packet, Path path, time_point timeout);

// retrieve metadata by packet identifier
Metadata* meta(Packet* packet);

// remove metadata from history by packet identifier

Metadata* erase(Packet* packet);

// release frame identifier (after status frame is received)

void release_id(Frame* frame);

Listing 3.5: Metadata structure

struct Metadata {
// data packet whose metadata are stored

Packet* packet;

// computed packet identifier
uint32_t packet_id;

// history of paths (path can be different with every retransmission)
std::vector<Path> path_history;

// current Xbee frame identifier

uint8_t frame_id;

// aggregated statistics of the packet

RemoteParameters frame_status;

// time of last packet transmission

time_point send_time;

// calculated timeout for acknowledgement packet

time_point timeout;

// number of retransmission
atomic_ushort retransmission_counter;

};

Dispatcher uses History: :watch() to compute next free frame identifier and add the packet
to the History. It also used to store and check acknowledge timeout and retransmission counter.
When Packet is delivered or timeout expires Dispatcher removes Packets and its Metadata from
History.

Node

Node is representation of single network node (listing 3.6).

Listing 3.6: Simplified Node class

3.2. Software implementation 31

class Node {
public:
// metwork address

Address address;

// mac address (applicable only for adjacent nodes)

uint64_t mac;

// node name (applicable only for self node)

string name;

// marks self node
bool self;

Every vertex inside Network graph contains Node. Self node is special case and only one self
node can exist in the Network. Only self string Node: :name is known to router, as it requires
AT command to obtain the name, however uint64_t Node: :mac addresses of direct neighbours

are known and Address Node: :Address are known for every discovered Node in the Network.

Network

Network represents graph containing connections between nodes. Every vertex incorporate Node
and for every edge associated is Parameters structure (listing 3.7).

Network is represented as undirected graph. Internally graph is represented as unordered_map<
Address, unordered_map<Address, Parameters*>> as compromise between access complexity and mem-

ory usage.

Listing 3.7: Edge Parameters structure

struct Parameters {
// total number of delivered packets
uint32_t good = 0;

// total number of undelivered packets

uint32_t errors = 0;

// total number of packet retries

uint32_t retries = 0;

// averaged delay on given edge (in milliseconds)
uint16_t delay = 10;

// antireliability measure based on prior parameters

float antireliability();

Network constructor requires self node address, so first node can be created and accessed us-
ing Nodex Network::self(). Elementary operations such as adding or removing nodes or edges are
implemented (listing 3.8). Operation of merging two graphs is implemented, as it is used with
Packet: :Type: :NodeBroadcast packet. Overflow-safe updating of edge Parameters is imple-
mented using Network: :update(). Summarized list of operations available in Network is presented

in listing 3.8.

Listing 3.8: Simplified Network class

32 Project

class Network {
public:
// constructor - adds self node
Network (Address self);

// try to add new nodes and edges to current graph
bool merge(Edge* edges, uint8_t length);

// try to add new edge
bool add_edge(Address a, Address b);

// try to add new node
bool add_node(Address a);

// check for edge existence
bool adjacent(Address a, Address b);

// remove edge
bool drop(Address a, Address b);

// get edge parameters

Parameters* edge(Address a, Address b);

// get mode parameters

Node* node(Address a);

// get self node
Node* self();

// convert graph to list of edges
Edge* graph(uint8_t &length);

// get mac address of given node address

uint64_t mac(Address a);

// get node address from mac address

Address from_mac(uint64_t mac);

// update edge parameters

void update(Address a, Address b, uint8_t retries, uint8_t error, uintl6_t delay);

// find most reliable path between two nodes without visiting already visited nodes
Path path(Address from, Address to, Path visited);

Essential operations
Iﬂssential(n)erarions:ﬂlchzisbool Network::add_edge (Address a, Address b);,bool Network: :add_node
(Address a);, bool Network::merge(Edge* edges, uint8_t length); and bool Network::drop(Address a, Address
b); do not generate error when node or edge does not exists (when removing) or does exist (when
adding). Instead, boolean value true is returned when operation is successful (that is when graph
changes after the operation) and false is returned when operation does not change the graph.
Furthermore bool Network::add_edge(Address a, Address b); and bool Network::merge(Edge* edges,

uint8_t length); operations will add missing nodes, so edge between could be created.

Edge parameters update

3.2. Software implementation 33

Figure 3.8: Delay calculating method

delaypre'uious + delaynew~|

delay = | 5

(3.1)

Edge Parameters are used to calculate antireliability measure and timeouts. Most recent link
statistics are preferred. Method void Network::update(Address a, Address b, uint8_t retries, uint8_t
error, uintl6_t delay); is preferred way of updating edge parameters, as it ensures no overflow
will happen.

Additionally uint16_t Parameters::delay is calculated as moving average (equation 3.1) — previ-
ously calculated delay and current delay (with delay assumed to be 10ms at the beginning) are

averaged together.

Most reliable path

As described in the routing algorithm, path between source and destination is assumed to be
most reliable when sum of antireliability measures on intermediate edges is minimal. Therefore to
obtain most reliable Path, antireliability measure is treated as edges weight and path with smallest
cost is pretended to be the most reliable one. To avoid cycles previously visited nodes should not
be visited again. List of previously visited nodes is included when computing path and cost of
visiting already visited nodes is increased drastically.

To compute such Path well known Dijkstra shortest path algorithm [Dij59] is used. Implemen-
tation based on priority queues [Bar98] allows to efficiently solve shortest path algorithm between
two nodes in the network. Built in std::priority_queue is used with custom comparator based

on Parameters::antireliability().

3.2.3 Driver

Driver provides way for any application to communicate with the network based upon routing
system implemented in the thesis. It is a layer of abstraction hiding hardware, routing operations
and network topology.

Well designed driver ensures following concepts:

e adds minimal performance overhead,

allows bidirectional communication with any device in the network,

hides network topology,
e has minimal dependencies,

e works in heterogeneous environment,

easily integrates with client applications.

Publish-Subscribe pattern

Publish-Subscribe pattern allows publisher to send message to given channel for any number of
clients, furthermore any number of clients can listen for any channel, even if there is no publishers
in observed channel [CMPCO04].

34 Project

To be specific Topic-Based Publish-Subscribe pattern [EFGKO03] is used in Driver implemen-
tation as inter-process communication tool. In this approach publisher labels every message with

topic, while can subscribe to patterns which can match any number of topics.

Following topic naming convention is used internally by Driver:

network:PORT:DESTINATION: SOURCE
undelivered:PORT:DESTINATION: SOURCE

Where PORT is number in range [1,255], DESTINATION and SOURCE are accordingly destination and
source addresses. Addresses can be numbers in range [1,255] or token self which explicitly marks

local node.

Any of the parameters can be replaced with * (asterisk) — the matching operator. Therefore it
is possible to subscribe and receive message with any combination of tuple (PORT, DESTINATION,
SOURCE). Interesting and useful patterns with explanations are provided in table 3.9.

Table 3.9: Example patterns

Pattern | Port | Destination | Source | Description

network:13:2:self 13 2 self Transmission from self to node 2
on port 13 (used to send message).
undelivered:13:2:self 13 2 self Undelivered message from self to

node 2 (used when message could
not be delivered by any means).
network:*:*:self | any any self Used in Router to intercept any
messages that need to be sent and
route them to destination node.

undelivered:*:*:self | any any self Used in clients to intercept any un-
delivered messages from self.
network:13:self:2 13 self 2 Receipt from 2 on port 13 (used

when waiting for messages from
given node on given port).

network:13:self:* 13 self any Used when waiting for messages on
given port from any node.
network:*:self:x | any self any Used to receive any message for
self node.
Redis

Redis is open source in-memory key-value database and distributed implementation of Publish-
Subscribe pattern. It has low memory footprint and low performance overhead, although it does
implement Publish-Subscribe with topic pattern matching.

Using C/C++ driver Hiredis and few commands (as shown in table 3.10) satisfies requirements
for Router. For each machine only one instance of Redis server is required, even if there is more
than one Router instance (as happens on developer machines or when using Simulator). To prevent
topic collisions, every Router may introduce each own prefix (a number in range [1, 255], generating
ie. topic 13/network:*:*:self instead of network:*:*:self).

Usage of Redis comes up with additional property — it is possible to connect Driver to remote
instance of Redis server. As a consequence it is feasible to connect multiple remote applications
to local machine with Router and XBee device. Multiple complex topologies can be created with

this feature as shown by examples in figure 3.9.

3.2. Software implementation 35

Table 3.10: Redis commands[Red15]

Command ‘ Complexity ‘ Description
PSUBSCRIBE pattern O(N) Subscribes client to given patterns (with * allowed).
PUNSUBSCRIBE pattern | O(N + M) | Unsubscribes client from given patterns.
PUBLISH topic message | O(K + M) | Publish message to given channel.

Where N is number of patterns client already subscribed, M
is total number of patterns in system, K is number of clients
subscribed to given channel.

XBee XBee XBee

JART

Ethernet

Controller A

thernet

Ethernet Switch

kT
Printer

ush

RFID Reader RFID Reader

RFID Reader

RFID Reader

(b) Possible sport timing system architecture

Figure 3.9: Example networking topologies

Implementation details
Driver part is implemented with three classes:

e Driver — bridge between C++ and network, most important part from developer point of

view,
e Manager — creates Subscriptions with given topic prefix,
e Subscription — subscribes to single Redis topic, runs in separate thread.

Driver interacts with applications in asynchronous matter. C+-+11 language features such as
std: :function (extension of function pointer concept) is used to bind code with message receipt
events — any type of code such as functions, methods or lambda can be used.

Driver defines function types as follows:

Listing 3.9: Driver handlers types

// Ezhaustive handler with destination address, port, source address, data and data length

typedef std::function<void (Address, uint8_t, Address, uint8_t*, size_t)> Action;

// Simplified handler with source address, data and data length
typedef std::function<void (Address, uint8_t*, size_t)> LocalAction;

36 Project

Constant Driver: :SELF is defined and recognized in Driver. It should be used to mark or
check local address.
With previously introduced handler types following Driver methods connect network with

code:
® void self(Action action); — executes action when any message to self is received,

® void listen(uint8_t port, LocalAction action); — executes action when message on given port

to self is received,

® void deliver(Address destination, uint8_t port, uint8_t* data, uint8_t length); — sends given

data to destination on given port,

® void undelivered(Action action); — executes action when message from self could not be

delivered.

These methods abstract network topology and hide routing, yet they follow the concept of
reliable network implemented in the thesis. It is possible to send messages, receive messages and
get notified of undelivered messages.

Presented code listing 3.10 shows different ways to interact with the network in echo style
application. It listens on port 13 and sends back to source any received message, in case of delivery
failure handle_error is executed. Overall three threads are created — one for main function, one
for listener and one for undelivered messages listener. Program is running until killed from outside

environment.

Listing 3.10: Example echo application

#require <iostream>
#require <unistd.h>

#require <driver/driver.h>

using namespace std;

using namespace PUT::CS::XbeeRouting;

// undelivered messages handler
void handle_errors(Address destination, uint8_t port, Address source, uint8_t* data, size_t length)
{

cerr << "Could not_ deliver data: ,’" << data << "’ to," << destination << endl;

// basic echo program
int main() {
// driver instance

Driver driver;

// listen for incoming messages on port 13 (lambda function)
driver->listen(13, [](Address source, uint8_t* data, size_t length) {
// send back data
driver->deliver(source, 13, data, length);
cout << "Received,’" << data << "’ from " << source << endl;

B;

// handle undelivered messages (function pointer)

driver->undelivered(handle_errors) ;

// let other threads ezecute

3.2. Software implementation 37

pause() ;

return 0;

Driver is build as shared library available in bin/libxbee network.so (or libxbee network.dylib
on OS X platforms). By default Driver connects to local Redis server instance by Unix socket at
path /tmp/redis.sock. Driver can be further configured using environment variables presented in
table 3.11. Any program using Driver shared library reacts to previously mentioned environment

variables.

Table 3.11: Driver environment variables

Variable Type Default | Description
REDIS_HOST | network address | none | network address of Redis server (using
Unix socket if not provided)
REDIS_PORT number 6379 Redis server port
REDIS_DATABASE number none prefix of topics in case of using multiple
Router instances with same Redis server

3.2.4 Dispatcher

Dispatcher is responsible for successful delivery of Packet or discovering delivery failure. Instance
of Dispatcher is created by Router. Implementation of Dispatcher realize diversity of operations

as seen in listing 3.11.

Listing 3.11: Basic Dispatcher class

class Dispatcher {
public:
// constructs instance of dispatcher with access to XBee device, network graph and driver

Dispatcher (Xbee& x, Network& n, Driver& d);

// scan incoming packet

void scan(Packet* p);

// analysis of data packet
void handle_data(Packet* p);

// analysis of acknowledge packet
void handle_ack(Packet* p);

// analysis of internal packet (other than receive xzbee frame)

void handle_internal (Packet* p);

// send packet with delivery guarantee
bool deliver(Packet* p);

// send packet to adjacent node
bool send(Packet* p);

// locally broadcast packet
void broadcast(Packet* p);

// check for timeouted packet
int tick();

// retransmit packet

38 Project

bool retransmit(Metadata* meta);

// retransmit packet if number of retransmissions is not mazed out
bool try_retransmit(Metadata* meta);

};

Dispatcher can scan every incoming Packet for data required to guarantee successful packets
delivery. Moreover it is charge of updating network parameters, based on statistics carried within

acknowledge packets.

Packet analysis

Every Packet received by Router is scanned by Dispatcher: :scan() before further processing.
Various parameters are obtained depending on packet type. To make implementation more read-

able, handling method depending on packet type were introduced.

Data packets
Packet is considered as successfully delivered when Packet destination is self node. In this

case positive acknowledge packet is generated and sent towards source node.

Internal packets

Internal packets encapsulated XBee Frame other than ReceiveFrame. Frame of type StatusFrame
is processed inside Dispatcher::handle_internal (Packet* packet) as it contains delivery status infor-
mation of last send Frame.

Every StatusFrame is associated with frame_id, that being so Metadata is retrieved from the
History. Statistics of given Packet, stored inside metadata, such as delay, number of errors or
retries are updated. Using the same statistics parameters of link between self and status source
are updated.

If delivery status is negative, packet retransmission occurs (using Dispatcher: : try retransmit),
unless retransmissions are no allowed any longer for this packet. In this case, negative acknowledge
packet is sent towards packet source.

Receipt of positive acknowledge packet causes corresponding Packet and its Metadata to be

removed from History, as they no longer be useful.

Acknowledge packets

Acknowledge packets have the same PacketId as corresponding data packet, so Metadata is
easily retrieved from the History.

Acknowledge packet carries status and edge parameters in form of array of RemoteParameters.
Local Network graph is updated with these statistics. Every acknowledge packet passing through
intermediate node refreshes local graph, so statistics used to calculate antireliability measures are
most recent.

Local node parameters retrieved from History for associated packet are appended to acknowl-
edge packet. If local node is not associated packet source (origin of acknowledge packet) it is
passed to next node (using Dispatcher: :send()) following the same path the original packet was
routed.

Otherwise if acknowledge packet reached its destination and its status is negative, retransmis-

sion of corresponding data packet occurs (if it is still allowed).

3.2. Software implementation 39

Transmission routines

Different packet transmission routines are implemented (as seen in table 3.12). Method Dispatcher: :deliver ()

is most important in context of the thesis, as it ensures Packet delivery.
Table 3.12: Dispatcher transmission methods

Method Range Description

send() | physical neighbours | Send packet to locally adjacent neighbour without any
guarantee of success

broadcast() | physical neighbours | Send packet to every locally adjacent neighbour (broad-
cast) without any guarantee of success

deliver() | any node in network | Send packet to any node in the network, guarantees de-
livery or information in case failed delivery

Both send and broadcast methods basically encapsulate Packet in TransmitFrame with
proper MAC address and do not receive StatusFrame in response. Message is delivered back
to Redis using Driver::deliver_back() in case the source node is not adjacent to destination

node (message can be recognized as undelivered in client applications).

Delivery commitment

Delivery commitment in deliver, implemented accordingly to algorithm described in previous
chapter, requires more processing. Most reliable path is calculated using network.path(self->address
, packet->destination, packet->visited). If such path could not be found and self node is source
node (not intermediate one), message is delivered back in same manner as mentioned previously.

Packet is added to History and frame_id is obtained using history.watch(packet, path, timeout
(packet, path)). Therefore Metadata is created for the packet and its delivery status is monitored.
Packet’s acknowledgement must be received within timeout otherwise, after number of consequent
failures packet will be considered as lost. It will be delivered back to Redis as undelivered if failure
is detected on source node, otherwise acknowledge packet marking failure will be send back to

source, causing delivering back to Redis.

Packet retransmissions

Method bool Dispatcher: :retransmit(Metadatax meta) was designed to support Packet retransmis-

sion. It is implemented comparably to deliver method, however as the Packet already exists

in the History there is no need to use History: :watch(). Instead new Metadata: :frame_id is

issued and updated in the History. Both new Metadata::send time and Metadata::timeout

are assigned. Packet is serialized and encapsulated into Frame, as such it is sent to XBee device.
Retransmission count of given packet is restricted by constant Metadata: :retransmission max

= 5. Helper method bool Dispatcher::try_retransmit(Metadata* meta) was created which retransmit

Packet stored in the History. With each retransmission adequate Metadata: :retransmission_counter

is incremented, until retransmission count reach retransmission max. In such case the Packet is

assumed to be undelivered and it is returned to client application.

Timeout system

Constructor of Dispatcher class creates background thread responsible for detecting data Packet
with expired acknowledge timeout.
In this thread int Dispatcher::tick() method is executed periodically (with period set as miliseconds

Dispatcher: :tick_sleep_time = 100). Timeout is calculated for every Packet individually using

40 Project

time_point Dispatcher::timeout(Packet* p, Path& path) as part of deliver method. Timeout method
calculates deadline for acknowledge packet to return, accordingly to equation 2.2 — timeout de-
pends upon Path to destination and intermediate link statistics such as delay, retries, errors and
deliveries count.

For each Packet contained in History previously computed timeout is compared with current
timestamp. If acknowledge packet is not received before timeout, retransmission is performed
unless maximal retransmission tries was conducted. In this case the packet is marked as undelivered

and its Metadata is removed from History.

3.2.5 Router

Router class is entry point of router application. It is responsible for routing process and topology
discovery. Router creates connection with physical XBee device and obtains basic parameters from

the device. Router works in simple processing loop as shown in listing 3.12.

Listing 3.12: Router processing loop pseudocode

while (should_run) {
// receive next frame from zbee
frame = xbee.receive();
// deserialize packet
packet = packet->from_frame(packet) ;

// allow dispatcher to process the packet

dispatcher.scan(packet);

// data packet
if (packet->type == Packet::Type::Data) {
// if packet reached its destination
if (packet->destination == self) {
// publish it to redis so other applications can read the message
driver.publish(packet) ;
}
// if this is intermediate mode
else {
// let dispatcher move packet forward
dispatcher.deliver(packet);

}
// topology packet
else {
// analyze packet message so network topology can be updated

proceed_with_topology_maintenance (packet);

The pseudocode shows basis of operation, however, Router code is more complex (listing 3.13)

and closely reflects algorithms presented in previous chapter.

Listing 3.13: Basic Router class

class Router {
// constructs router with zbee device connected to given serial port and given address as self
node address

Router(char* serial_port, Address address);

// creates router instance and processing loop

3.2. Software implementation 41

static void run(char* serial_port, Address address);

// receive and deserialize packet from zbee

Packet* receive();

// process next packet, behaves adequately to packet type

void process();

// broadcast heartbeat packet to let other nodes know about its ezistence
void heartbeat();
s

Initialization

Instance of XBee device connector (described in previous section) is created. Radio power level is
configured and basic parameters such as node name, network address and local MAC address are
obtained. As a result Node* Network::self() is configured.

Router listens on channel network:*:*:self using Driver::self, so messages that need
to be sent to other nodes from external applications can be intercepted and delivered using
Dispatcher: :deliver().

Additional thread, broadcasting Packet: : Type: :NodeBroadcast every 15 seconds acts as heart-

beat process and is required for proper topology discovery and maintenance process.

Receiving process

Packet is received from XBee device using blocking method Packet* Router::receive(). Frame
acquired from XBee device is analyzed. Packet is deserialized from Frame::Type: :Receive,
however, other types of Frame cause Packet: :Type: : Internal to be generated and surround the

frame.

Processing packets

After receiving the packet, it is let to be processed by Dispatcher in the first place. Then, packet
is processed adequately to its type. Some packets carry data, other one can be acknowledge or

topology maintenance packets. switch statement is to differentiate actions for the packet.

Data packet

Data packet can be processed in two ways, depending on its destination. If given node is packet
destination (that is self->address == packet->destination), then contained data is published to Redis
using Driver::deliver method. At this moment acknowledge packet has been already sent by
Dispatcher.

Otherwise, given node is intermediate node on path to packet destination. As so, packet must
be routed to its destination. After adding Address self->address to list of packet waypoints, the

packet is sent further using Dispatcher: :deliver().

Acknowledge packet

On Router layer, acknowledge packets are used just for logging purposes.

42 Project

NodeBroadcast packet

NodeBroadcast packets are received as Node heartbeat. As designed in topology discovery
algorithm, edge between self node and node address contained in the packet is added to the
Network graph. If graph was updated (that is self node did not have the edge in the graph
already), current state of the graph is locally broadcasted.

EdgeDrop packet

EdgeDrop packets cause removal of Edge contained in the packet from self Network graph.
Packet is further propagated (using Dispatcher: :broadcast), only if the connection defined Edge
was existing in the graph.

Graph packet
Graph packets are received from adjacent nodes after successful recognizing of new node. It is
assumed that received graph may contain new nodes and edges. As so Network: :merge operation

is executed. If state of the local Network graph was changed, updated local graph is broadcasted.

3.2.6 Simulator

In order to make design and development process more reliable XBeePro-868 simulator was de-
veloped. Algorithm and implementation should be tested on various network topologies and in
different environments. Such tests are not possible with five radio modules owned by authors.
Tests could have been conducted using larger amount of XBee modules, however it is not an eco-
nomical solution. In addition these tests could not have been reliable as real world environment
can behave in unpredictable way.

Therefore simulator was created — one instance of the simulator can simulate network of physical
XBeePro-868 nodes. The simulator uses POSIX feature such as pseudo terminals (called PTY).
On POSIX platforms physical serial ports are represented as special files available as /dev/tty*
path. Similarly PTY are special files (usually available as /dev/pty*) with similar behaviour to
serial port — read and write operations are available on both sides of the PTY. As a result it is
possible to deceive the router application and pass path to pseudo terminal instead path to real
serial port — no changes in router code are required.

Simulator is developed in Ruby language, because of its great standard library and vast available
community provided code as well as metaprogramming availability. It is possible to use simulator
as standalone application using bin/simulator or as library used in other Ruby code. When
used as standalone application list of paths to PTY and names of associated virtual XBeePro-868
devices is printed to standard output, various logs are printed to standard error stream.

Simulator splits network topology from environment definition. Network topology is definition
of undirected graph with possible links between XBeePro-868 devices. Environment is file describ-
ing behaviour of nodes and links at any moment of time. Parameters such as node power state,

link delay and number of frame retries and errors can be configured.

Basis of operation

In order to use simulator, network topology must be provided. Network topology is represented by
undirected graph, where vertices represent XBeePro-868 module (identified by name) and edges
represent aerial links between the modules. There is no theoretical limit on number of nodes or

edges, however simulation efficiency can decrease when large dense graph is created

3.2. Software implementation 43

Table 3.13: Environment parameters

Parameter | Subject | Value | Description
Power node boolean | Power state of the node. Powered off devices cannot receive
or transmit frames.

Retries edge number | Number of frame retries required to transfer frame between
two nodes.
Delay edge number | Time necessary to transfer one frame between two nodes (for
each retry delay is accumulated).
Errors edge boolean | Determines if frame is delivered when using given link.

Inspired by real world, environment definition must be supplied — environment defines behaviour
of nodes and links. In real world node can be either powered on or off, links introduce delay
depending on propagation time and distance and various events can contribute to number of
transfer retries and errors (parameters summary is available in table 3.13).

Furthermore any of the parameters can be common for every node and link or can be defined
for specific node or link. The environment uses directed version of network topology — it is possible
to specify different parameters for two directions of same aerial link.

Moreover parameters values can be represented using probability density functions. This ap-
proach allows accurate modeling of real world behaviour. Various probability distributions are
available, however, Gaussian (normal), Poission and degenerate distributions are most useful in
this case [Tij12].

Output of probability density functions can be scaled and biased so parameters can be retained
in specific ranges. Additionally probability density functions can be specified differently depending
on time increasing reality of the simulation’s model. Therefore value of specific parameter p is
defined as value of stochastic process X, ;4(t) in given time point ¢ for link or node id as presented
in following equation:

Xp,id(t) = apid - fpia(x,t) + bpia
Where:

ap.id is scale of parameter p,
bp,ia is bias of parameter p,
fpaa(z,t) is random value generated using probability density function at given time ¢.

Parameters values are calculated in different ways as they need to be converted to appropriate

types using following equations:

e power must be converted to boolean value

0 Xpower,a(t) <1
1 Xpower,a(t) > 1

powery(t) =

e retries cannot exceed maximum number of retries

. Xretries,a—)b(t) Xretries,a—)b(t) < Tet'riesma$
retriesq,—p(t) =

retriesmax Xretries,a%b(t) Z Tetriesmaz

e delay must incorporate number of retries

delaya—p(t) = Xaetay,ab(t) - (retriesq—p(t) + 1)

44 Project

e link error parameter must be converted to boolean value

0 Xerrors,aﬁb(t) é 0

errorsq—p(t) =
1 Xerrors,a—)b(t> >0

Where:
a,b are node identifiers,
t is time point,
retriesSmae 18 maximum number of frame retries.

It can be noticed that in given time ¢ effective networking graph can change. If a node is
marked as powered off, depending on power,(t), the node is effectively removed from the graph, so
any transmission to the node will fail. Similarly if an edge’s errors,_(t) parameter denotes link
failure, transmission from a to b will fail. Therefore environment configuration can dynamically

change effective network graph (examples can be seen in figure 3.10).

Processing loop

With presented parameters definition, following processing loop is executed for each node.

A frame is received from given node pseudo terminal. Frame is deserialized from raw byte
sequence.

If frame is CommandFrame type appropriate radio parameters are set or read and CommandResponseFrame
is sent back to the node.

If frame is TransmitFrame decapsulated data are passed to destination nodes’ receive method.
In case of broadcast transmission, the data are passed to every adjacent node in effective graph.
If transmission can occur, that is effective graph computed using environment state in given time
contains edge connecting source and destination node, ReceiveFrame is created.

The data are encapsulated into the ReceiveFrame, after delay depending on delay,—s(t) the
receive frame is serialized and sent over destination’s pseudo terminal to destination’s application.
StatusFrame is generated and sent to source node pseudo terminal. In case of transmission failure
(depending on powery,(t) and errors,—p(t)) the status frame contains appropriate statistics.

Every event in processing loop creates log entry tagged with node name, frame data and time
relative to start time of simulation. Probability related functions are implemented using community

developed courier-rb library.

Input files

Simulator requires two input files. These files describe network topology and environment. It can
be noticed that environment definition is quite detailed and may require complex input file.

In order to make input files human readable YAML file format was chosen. YAML is human
readable, indentation based, popular data format. It is assumed syntax in examples provided
below is self-explanatory. Complete description can be found in reference card [YAMO6].

Nodes are identified by name, so any unique number or string can be node identifier.

Network topology
Network topology is represented as adjacency map — every node is associated with list of
adjacent nodes. Example chain topology network can be seen in listing 3.14. By convention

network definitions are stored in *.network.yml files.

3.2. Software implementation 45

) every node and link operative (t =) node B not operative (t
) link A — B and B — A not operative (t = d) only link A — B not operative (t =

Figure 3.10: Network graph in various moments of time
Effective graph is shown in black.

Listing 3.14: Seven nodes chain network topology

[2]

[1, 3]
[2, 4]
[3, 5]
[4, 6]
[5, 7]
[6]

~N o o W N

As network topology graph is undirected, both direction entries are redundant and may be

omitted (as can be seen in listing 3.15).

Listing 3.15: Three nodes complete graph

alfa:
- beta
beta:

46 Project

- gamma
gamma :
- alfa

Two different syntaxes can be observed in listings 3.14 and 3.15, presenting two admissible

ways of enumerating lists in YAML.

Environment definition

Environment definition requires file structure which allows to specify common or specific param-
eters distribution for nodes and edges in given time points. Therefore environment file structures
is divided into time range which can start in some absolute time point or after delay relative to
previous time point. Definition of example "perfect” environment can be seen in listing 3.16 — such

environment guarantees transfer of every frame.

Listing 3.16: Example perfect environment definition

start:

point: O

edges:
all:
delay: 5
retries: 0O

errors: 0O

nodes:
all:

power: 1

Each time range is labeled with identifier and its start time point must be specified. To specify
absolute time moment point key must be used, in order to specify time relative to previous time
point delay key can be used.

Most recent parameters definitions are used — if parameter for given node or frame is not
defined in current time frame, last definition is used. In each time frame parameters for edges can
be specified (in section edges) so as nodes parameters (in section nodes). A key all can be used
to set parameters of every edge or node. To set parameters for specific node, its name must be
used as key in nodes section. In similar fashion setting link between node a and node b parameter
requires to use array [a, b] as key in nodes section.

Parameter distribution can be specified in two ways, depending on required distribution. De-
generate distribution can use simplified syntax as it can be defined using one constant. Other
distributions require full distribution definition. To pair parameter with distribution a parameter
name must be used as a key and list of properties must be passed, where distribution key is
required (for degenerate distribution single number can be passed instead of properties).

Every distribution can use bias and scale parameter, however, any distribution requires
other specific constants. Distribution names and their required arguments are dependent on
croupier-rb implementation — list of useful distribution names and their parameters can be seen
in table 3.14. More distribution specifications are available in croupier-rb gem documentation.

Complex example presenting described parameters is available in listing 3.17. Three time
ranges will occur — start at ¢ = 0, storm at ¢ = 10 and back_to_normal at ¢ = 60. Short syntax
for degenerate (constant) distribution, parameters specific for edge [alfa, gamma] and node beta

and usage of YAML references can be noticed.

3.2. Software implementation

Distribution name

47

Table 3.14: Available probability distributions

Default parameters

Description

normal

poission
degenerate

uniform

mean = 0.0, std = 1.0

lambda = 50
constant = 42

included = 0.0, excluded = 1.0

Normal (Gaussian) distribution with
given mean and standard deviation.
Poisson distribution with given lambda.
Discrete distribution which returns the
same value each time.

Uniform distribution generating number
between included and excluded, where
each value is equally likely.

Listing 3.17: Complex environment example

start:

point: O

edges:

all: &perfect_edges

delay: 10
retries: 0O

errors: O

[alfa, gamma]:
retries:
distribution:
included: O
excluded: 5

nodes: &nodes_on
all:

power: 1

storm:
delay: 10

edges:
all:
delay:
distribution:
included: 20
excluded: 50

nodes:
beta:

uniform

uniform

distribution: normal

mean: -1
bias: -0.2

back_to_normal:

point: 60

edges:
<<: perfect_edges

nodes:

<<: nodes_on

48 Project

Implementation summary
Simulator code is divided into multiple parts however following classes has crucial application:

e XBee: :Node — single XBeePro-868 node, communicates over its own pseudo terminal, dese-

rializes frames and responses to various events,

e XBee: :Network — manages graph of nodes, it is responsible for calculating effective graph

and properties,
e XBee: :Frame — representation of XBeePro-868 frame.

Classes’ implementation were divided into multiple partial classes files grouped by implemented

functionality type.

Frame implementation

Implementation of XBeePro-868 frames is required to operate on data serialized as raw bytes
sequences. Every frame documented in XBeePro-868 manual [Digl4b] is implemented as Ruby

class inside XBee: :Frame module.

Domain Specific Language

Domain Specific Language was introduced to overcome problem of frames implementation.
Domain Specific Languages are computer languages designed to be specialized in distinct problem
[VDKV00]. Human friendly DSL to solve the problem was designed as superset of Ruby language.

It is executable Ruby code even though it looks like new programming language.

Listing 3.18: TransmitFrame implementation

frame 0x10, :transmit,
id: ’C’,
mac: ’Q>’,
network: ’S8>’,
command: ’a2’,
status: ’C’,

data: ’*a’

Using various metaprogramming methods, procedure XBee::Frame::frame(id, name, **args) dy-
namically create class which represents XBee frame identified by id and name. Field structure is
specified using **args dictionary — every field is specified by name and Array: :pack compatible
string [Rub13]. Therefore each frame can be specified as in similar way as example TransmitFrame
listing 3.18. Each frame implementation supports serialization using to_bytes and deserialization

using from_bytes.

Supported events

Only subset of operations supported by XBeePro-868 device is implemented — the subset covers
every frame required for proper router simulation. Implementation reacts to frame received frames
such as TransmitFrame and CommandFrame.

Frame are handled inside Node class. Using metaprogramming another DSL feature was pro-
vided — XBee: :Node: :receive(type, **args, &block) and XBee::Node: :reply(type, **args)
methods.

Using receive method allows to filter incoming frame by its type and by contained data
values. It allows to write event-based code as it can be seen in listing 3.19 — the example presents

implementation of handling broadcast-type TransmitFrame.

3.3. Testing process 49

Table 3.15: Commands available in simulator

Name Description Behaviour in simulator
FR resets the radio restores Node parameters back to default
NI reads node name name is set based on value in topology definition
file
1D reads network identifier network identifier is constant OxFFFE as instance of

simulator can simulate only one network)

SL | reads lower eight bytes of MAC | MAC addresses are generated automatically by
Network and they are guaranteed to be unique)
SH | reads higher eight bytes of MAC | these bytes are constant and set to 0x0013A200

PL sets power level no influence on simulation behaviour
MT sets retransmission limit sets retriesmax
DB reads signal strength returns mock value

Listing 3.19: Broadcast TransmitFrame handler

receive :transmit, mac: OxFFFF do |framel|
broadcast frame.id, frame.data

end

Method reply enable creating, serialization and sending frame over pseudo terminal to client
application. Example usage showing CommandResponseFrame reply with response to NI command

is shown in listing 3.20.

Listing 3.20: NI command response

reply :command_response,
id: frame.id,
command: ’NI’,
status: O,
data: Q@id.to_s

Supported commands

Only subset of configuration commands is supported in the simulator. These commands are
sufficient set to make router application fully operational. Implemented commands list is available

in table 3.15. Further commands implementation can be easily added if application requires them.

3.3 Testing process

In order to ensure that the implementation of the network protocols was properly designed various
tests has been conducted. Two testing strategies were chosen — unit testing and behaviour testing.
Tests has been written concurrently with the implementation, so any flaws has been fixed as soon

as they have been found.

3.3.1 Unit testing

Unit testing is concept of testing small individual units of software’s source code [PM14]. Individual
methods of implementation are tested in simplified environment. Therefore implementation errors
can be found independently and their localizations can be easily determined.

Unit tests has been written with help of googletest library [Gool5]. Network and Dispatcher
were seriously tested as core parts of the implementation. These tests were partitioned into tests

cases (table 3.16) comprehensively testing various combinations of input data. In the end 15 test

a0

Project

Table 3.16: Test cases

Name | Testing Goal
timeout | Calculation of proper timeouts depending on collected edge
statistics.
add_node | Ability to add new node unless node is already in the graph.
node | Accessing node by its address.
nodeForbiddenAddress | Awareness of invalid addresses when adding node or edge.

add_edgeWhenNodesDoNotExist
add_edgeWhenNodesExist
add_edgeSelfLoop

dropEdge

mergeGraphs
mergeTheSameGraphs
pathSingleChain
pathNotChainGraph

pathInTreeGraph

pathNoPath

pathNoChainGraphVisited

Creating nodes associated with new edge when these nodes
are not already in the graph.

Addition of new edge to the graph.

Inability to add loopback connection.

Removing edge form the graph.

Merging two graphs should result in addition of non existing
nodes and edges to target graph.

Merging edges already existing in target graph should not
change the graph.

Most reliable path between two nodes should be calculated
in basic chain graph.

Most reliable path between two nodes should be calculated
in complex graph.

Most reliable path between two nodes should be calculated
in tree.

Empty path should be expected when route between two
nodes cannot be calculated.

Calculated path should not contain already visited nodes.

cases were formulated with over 120 assertions. Multiple flaws were found and fixed using this

testing method.

3.3.2 Behaviour testing

Behaviour testing has been conducted as part of behaviour-driven development process. In this
technique various behaviours are described as scenarios which consists of preconditions, actions
and expected results [PM14]. The whole system, in our case implementation of network protocols,
is tested at once so complex behaviour can be described and examined.

In case of the project, behaviour of protocols’ implementation can be studied in various topolo-
gies and environment using previously designed simulator. As the simulator was implemented
in Ruby language, Cucumber application [Asl15] has been chosen as it easily integrates with the
simulator.

Scenarios of the tests were written in Gherkin language [Yel3]. Gherkin has natural-language-
based syntax and it is used to describe various scenarios combined. Each scenario can be described
by sequence of steps.

Each step can be either precondition, action or result. Set of logically

combined scenarios is called feature. Scenarios collected inside on feature can share common
background — list of steps executed before every scenario. Example scenario, testing basic behaviour

of chain network, is available in listing 3.21.

Listing 3.21: Feature describing basic behaviour of chain network

Feature: Testing basic chain network
Background: 7 nodes network in perfect environment
Given simulation of 02_chain network in perfect environment
And every router is alive

And topology is discovered

3.3. Testing process

Scenario:

Send from first node to second node

When 1 sends to 2 message "hello"

Then 2 receives from 1 message "hello"

Scenario:

Send from first node to last node

When 1 sends to 7 message "hello"

Then 7 receives from 1 message "hello"

And
And
And
And
And
And

1
2
3
4
5
6

receives
receives
receives
receives
receives

receives

acknowledge
acknowledge
acknowledge
acknowledge
acknowledge

acknowledge

from
from
from
from
from

from

2
3

ESTINC N N

o1

Variety of steps are provided in order to efficiently and accurately write scenarios.

designed steps is available in table 3.17.

List of

With possibilities given by implemented steps, comprehensive feature descriptions has been

written. These features covers variety of network functionality such as topology discovery, packet

routing, handling undelivered messages and behaviour in variety of environments. Behaviour tests

made whole process of protocols’ implementation much easier as every aspect of network behaviour

was tested for proper operation.

92

Project

Table 3.17: Designed Cucumber steps

Step

Description

timeout is timeouts

simulation of topology network in env environment

time is timepoint
node name is down
router name is alive

every router is alive

topology is discovered

source sends to destination message "message”

node receives acknowledge from destination

destination receives from source messages "message”

source receives back message "message”

message route is path
source broadcasts data data
source transmits to destination data data

packet is broadcasted from source

Set timeout for time-bound steps. De-
fault timeout is 5 seconds.

Spawns simulator with given network
topology file in given env environment
file. Fails when simulation cannot be
started within given timeout.

Sets simulation time to given timepoint.
Simulates power of node with given
name.

Spawns instance of router on network
node with given name. Fails when
router is not spawned within timeout.
Starts router instance on every net-
work node. Fails when routers are not
spawned within timeout.

Waits until every router discovers the
topology. Fails when topology is not
discovered on every router within time-
out.

Publishes message on designated Re-
dis channel, effectively causing message
send operation from source node to des-
tination node.

Waits until node receives an acknowl-
edge packet from corresponding data
packet’s destination node. Fails when
acknowledge is mnot received within
timeout.

Waits until destination node receives
message from source node. Fails when
message is not received within timeout.
Waits for undelivered message origi-
nated from source. Fails if message is
eventually delivered.

Checks if message route is equal to
given path.

Checks if source node broadcasted raw
data bytes within given timeout.
Checks if source has sent raw data bytes
to given destination within timeout.
Checks if given packet type (node or
graph) is broadcasted from source node.

Chapter 4

Sample applications

This chapter describes sample applications created in order to present the usage of designed proto-
cols. Each application is written in C+4 11 as a command line program and uses API of network
driver described in section 3.2.3. Echo and temperature reading applications, beside driver API,

use only standard C++ 11 library. Console application use GNU Readline! library in addition.

4.1 Echo

Echo is simple application that shows basics of receiving and sending data using designed network.
Purpose of this application is to receive data and send back exactly the same data to the sender
of received data.

Echo as an optional parameter takes a port number on which it accepts data packets. By
default it listens on the port 15. After determining port number, application creates instance of
PUT: :CS: :XbeeRouting: :Driver class and invokes listen method on this instance. Listing 4.1

shows whole implementation of the program.

Listing 4.1: Echo application

#include "../driver/driver.h"

using namespace PUT::CS::XbeeRouting;

int main(int argc, char comnst* argv[]) {
Driver* driver = new Driver();

uint8_t port;

if (argc == 1) {

port = 15;
} else {
port = atoi(argv[1]);

}

driver->listen(port, [=](Address source, uint8_t* data, size_t length) {
if (source != Driver::SELF)
driver->deliver(source, port, data, length);

B;

pause();

return 0;

Lhttp://cnswww.cns.cwru.edu/php/chet /readline/rltop.html

93

54 Sample applications

A ping @ bing C

pong pong

Figure 4.1: Example of using echo application

First argument of 1listen method is port in which echo application listen for packets. Second
argument of listen method is handler for received messages. In this case, it simply sends back
received data as new packet using deliver method of PUT: :CS: :XbeeRouting: :Driver instance.

The network from figure 4.1 reveals the following usage examples:
1. node A sends message to node C,
2. node C' reads this message and sends the same data as in received message back,

3. node A receives message from node C' with the same data as sent in point 1.

4.2 Temperature reading

Another example of application that uses designed protocols is temperature reading. Application
is designed for RaspberryPi [UH12] with Raspbian operating system, but it should also work on
notebooks and PCs with Debian like Linux distributions. It reads actual temperature of CPU and
sends that value on demand. Similar to echo application, it takes one optional argument, which is
port number for incoming requests from other nodes. By default, port number equals 7.
Application reads temperature of CPU from suitable system file and divides value by 1000 to

obtain temperature in Celsius degree. Listing 4.2 shows how this is done:

Listing 4.2: Reading temperature of CPU

using namespace std;
float temperature() {
ifstream f("/sys/class/thermal/thermal_zoneO/temp");

if (!f.is_open())

return -1;

int temperature = 0;

f >> temperature;

return temperature / 1000.0;

Main functionality of this application is similar to echo. Its code consists of obtaining port
number, creating instance of PUT: :CS: : XbeeRouting: :Driver class and invoking listen method

on it. Implementation differs only in handling received data. This is shown in listing 4.3:

Listing 4.3: Handler for received data

driver->listen(port, [=](Address source, uint8_t* data, size_t length) {
if (source != Driver::SELF) {
if (strncmp((char*)data, "gettemp", 7) == 0) {
driver->deliver (source, port, (uint8_t*)to_string(temperature()).c_str(), s.length());

}

B;

4.3. Console 55

Handler checks if source node of received data is not self node. Then checks whether data
is equal to "gettemp” which is proper request for fetching response from this application. When
the above requirements have been meet, the obtained temperature is sent to request source using
deliver method on PUT: :CS: :XbeeRouting: :Driver instance.

Example use case for temperature reading application and network topology from figure 4.2

can be as follows:
1. node A sends "gettemp” message to node C,
2. node C reads temperature of its CPU,
3. node C sends this temperature to node A,

4. node A receives message with temperature from node C.

gettemp {\ gettemp
A B C

40 _} 40

Figure 4.2: Example of using temperature reading application

4.3 Console

Applications described above react only when data is sent to them. Purpose of console application
is to allow users to send data to chosen node at chosen port from command line. This application
was very useful as debugging tool while implementing communication protocols.

Console application takes two command line arguments while launching: first one is port
number (this is required argument), on which application listen for packets and second one is path
to file or device to which information about packets will be written. As default this argument is
set to stdout.

Whole application, excluding obtaining command line arguments, consists of two parts. First
one creates PUT::CS::XbeeRouting: :Driver instance and invokes listen method on this in-

stance. This is shown in listing 4.4:

Listing 4.4: Creating Driver instance and invoking listen method

Driver* driver = new Driver();
driver->listen(port, [=](Address destination, uint8_t p, Address source, uint8_t* data, size_t
length) {
if (source == Driver::SELF)
fprintf (descriptor, "packet,send:\n\tto:,Jd, port: %d, length: %zu\n\tdata: j%s\n\n",
destination, p, length, data);
else
fprintf (descriptor, "packet_received:\n\tfrom: %d, port: /d, length: jzu\n\tdata: %s\n\n",
source, p, length, data);
b;

First argument of listen method is port in which console application listen for packets. The
second one is handler for incoming and outgoing packets. It simply writes to chosen file/device
information about received/sent packets and data from these packets.

Second part of application is responsible for displaying command prompt and parsing com-

mands typed by user. Listings 4.5 and 4.6 show how this is implemented.

56 Sample applications

Listing 4.5: Main loop of application

bool run = true;
char* input, shell_prompt[100];
while (run) {
// create prompt
snprintf (shell_prompt, sizeof(shell_prompt), "port:%d>,", port);

input = readline(shell_prompt);

if (!input)

break;

if (stremp(input, "") != 0)
add_history(input);

if (strcmp(input, "exit") == 0)
run = false;
else

parse_command (input, driver, port);

free(input);

Listing 4.5 shows main loop of application. It simply creates command prompt and displays
it using readline function. This function also reads input typed by user and stores it in input
variable. Then, if input variable is not null and is not an empty string, typed command is added
to command history using add_history function, so it is accessible using up and down arrows
(like in bash). readline and add_history functions come from GNU Readline Library. Next,
it checks if command is not equal to "exit”, which results exiting application. If it is not, then

parse_command function, shown in listing 4.6, is invoked.

Listing 4.6: parse_command function

void parse_command(char* command, Driver* driver, uint8_t port) {
char* action = (char*)malloc(sizeof(char) * 10);
int destination = 0;

char* data = (char*)malloc(sizeof(char) * 255);

sscanf (command, "%s_%d %[\nls", action, &destination, data);

if ((strcmp(action, "deliver") == 0) || (strcmp(action, "d") == 0)) {
driver->deliver(destination, port, (uint8_t*)data, strlen(data));

}

free(data);

free(action);

This function parses command typed by user and invoke proper action for typed command.
Command have following structure: action destination data where the only possible action is
deliver (or shortcut: d) — sends packet to given node on given port using
PUT::CS: :XbeeRouting: :Driver: :deliver method, For example, deliver 2 some_kind_of_data
will cause delivery some_kind_of_data to node 2 on port given as command line argument to console

application.

4.4. Possible areas of usage 57

4.4 Possible areas of usage

There are many places where designed protocols can be used and many applications which can be
written to use them. As examples, system for measuring time during sport events and sensoric

networks are presented below.

4.4.1 Sport timing

As mentioned before, one possible area of usage for designed protocols is measuring time during
sport events like marathons, triathlons, ski country and so on. Whole system could look as
follows. Along entire marathon track, there are gates that records timestamps for every runner
when he passes through gate. At every gate and at arbiter position, there is XBeePro 868 [Diglla]
device connected to RaspberryPi [UH12]. These devices create one network using communication
protocols and algorithms described before. At every gate, there are RFID [Wan06] aerials with
controller and they are connected to RaspberryPi device. Every runner has RFID chip pinned to
his leg. When he passes through gate, application on RaspberryPi gets through RFID aerials and
controller unique identifier of runner stored in RFID chip, concatenates it with actual timestamp
and sends this information to arbiter position via created at the beginning network. Then, at
arbiter position, received data are matched with name of runner, stored with identifier in database

and can be shown to arbiter and supporters.

4.4.2 Sensoric networks

Another area of usage for designed protocols is measuring different kinds of parameters in pipelines
or other transmission networks. For example, protocols can be applied to measuring pressure in
gas pipeline. Scenario is very similar to sport timing. Along entire pipeline, there are places
where XBeePro 868 [Diglla] connected to embedded system are placed. At control station, there
is another XBeePro 868 device connected to computer that process received data. These de-
vices create network described in previous chapters. Every RaspberryPi device along pipeline has
connected pressure sensor. Application reads periodically pressure and sends this information to
control station, where this information is processed. Obviously, there is nothing against the use of
greater number of sensors with single RaspberryPi device, but the number of input/output ports

in RaspberryPi and throughput of system should be taken into account.

Chapter 5

Performance evaluation

In order to analyze the protocols, variety of tests are performed. Firstly topology discovery time
is investigated, than message routing was benchmarked using load tests, spike tests and harsh
environment tests [Sub06]. Such tests should give back clear image of protocols’ design and im-
plementation behaviour. Analysis of protocols’ behavior under the load and in prone to crashes

environment is accomplished in the section 5.6 at the end of this chapter.

5.1 Methodology

All of tests have been carried out with simulator (subsection 3.2.6) to provide the required test
conditions and avoid random interference. Moreover the use of a simulator provided tests re-
peatability. After measuring XBeePro-868 devices’ transmission delay, delays on each link were
simulated with normal distribution determined by 20ms mean and 1ms standard deviation. All
other parameters that do not have direct influence upon test behaviour, such as message contents,
have been generated randomly.

Message roundtrip time was chosen as benchmark measure. Therefore, each node was running
echo application (section 4.1). Time measured between sending message from source node to
destination and receiving it back from destination on source node is reliable indicator of protocols
behavior. With such response time, protocols’ and implementations’ performance can be easily
compared in various kinds of network topologies. Furthermore as short as possible roundtrip
time is a desirable from the end-user perspective, because request-response is common network
application workflow. Each test was performed 20 times and the reported results are the average

values. Complete numerical values can be found in Appendix A.

5.1.1 Tests environment

Significant tests parameters are network topology and its size. Following topologies were selected

for every test:

e chain graph — every node is connected to maximum two nodes and there is no cycles (figure
5.1),

e spider web graph — topology resulting of star and ring union (figure 5.1),

e random sparse graph — random graph generated using Gilbert model [Gil59] with 0.02 to 0.2
probability of edge existence, depending on network size (figures 5.3, 5.4).

99

60 Performance evaluation

Figure 5.1: Example chain network visualization (5 nodes)

Figure 5.2: Example spider network visualization (10 nodes)

It is worth noticing that chain graph is a pessimistic network topology, so it holds the up-
per bound of roundtrip time, it is least reliable kind of topology, however it offers the greatest
geographical span. Spider web graph can represent real world network built with radio modules
with omnidirectional antennas arranged around one central node. However the most important
topology is random sparse graph — it represents real world network, where every node has between

two and four direct neighbours and nodes positions are distributed quite unpredictably.

For each topology, following order of graph sizes values n were used: 5, 10, 20, 30, 40, 50 to
examine behaviour in variety of network sizes. Other parameters like number of sent messages will

be individual for each tests and are presented in appropriate sections.

5.1.2 Results visualization

In order to facilitate the analysis of the collected results, test results are visualized on the line
charts in appropriate sections. In each test case there is one line chart to the one topology. Charts
present average response time dependence on the number of nodes. If test assumes variability of

parameter m (number of messages), then on each chart suitable number of curves is presented.

Test results should confirm or refute the claims, that protocols work correctly on different
conditions. The shape of the curves determine the behaviour of protocols. It is expected that with
the increased order of graph the response time will also rise, as response time between furthest nodes
is dependent on network diameter. However, this growth should not be exponential. Moreover
curves for lower values of parameter m should be dominated by curves for greater value of this

parameter.

5.1. Methodology 61

Figure 5.3: Example sparse random network visualization (10 nodes)

NS
OO
© o
O ONE (D
SHgl & o
o
O SRl OO R e W
< ())
OF SONS ()
& L S

Figure 5.4: Example sparse random network visualization (40 nodes)

62 Performance evaluation

—e— random —M— spider —@— chain

T T T T T T T T T T
2.5 .
2 | |
Q
B 15 .
+
>
5)
>
Q
z
2 i |
0.5} |
O | |
| | | | | | | | | |

5 10 15 20 25 30 35 40 45 50
Nodes count

Figure 5.5: Complete topology discovery time

5.2 Topology discovery

Important feature of the presented protocol is self-organization, an essential part of this feature is
topology discovery. It is limited by sending out a broadcast in wireless network. Multi-hop nature
makes it only more difficult and time-consuming. In order to examine how the protocols handle
topology discovery, the following test was conducted.

In the same moment all nodes become enabled (their state is changed from passive to active)
and they join the network, this moment of time will be referred to as start time. Moment when last
node discovers complete network topology (that is every node achieved consistent and final state
of network topology) is called discovery end time. Difference between these two times, discovery
end time and start time, is interpreted as complete topology discovery time.

It is assumed that all nodes initiate topology discovery protocol at the same time. This be-
haviour allows discovering various parts of the network at the same time. However, some mutual
interference effects can be observed with adjacent nodes.

In figure 5.5, it can be seen that chain topology discovery is slowest as each node is connected
to one or two other nodes only. That fact causes chain network to be the worst case, yet still it
can be noticed that complexity is linear in network size domain.

In case of spider web topology, observed outcome seems to be optimal. Increasing the network’s
size results in slight increase of topology detection time and the curve is resembling logarithmic
complexity. The fact of quick reach of a consistent state results from small network diameter and
constant degree for all vertices (excluding the central node). Detection of a new node can be
propagated to every other node in a very small time, as the central node is connected to every
node. These factors make this topology an optimal one.

Topology discovery in random sparse graph seems to be little worse than in spider web topology.

5.8. Load testing 63

It can be seen, that their curves are closely related. As random graph reflects real world scenario,
measured 750ms required to discovery topology on every node seems promising.

It is worth mentioning that after network topology is discovered (the consistent state is reached),
new node joining the network will obtain complete network graph in constant time. As only one
heartbeat and graph transmission from any adjacent node is required to acquire network graph,
this operation can be completed in less than 50ms. However, propagation of this new node in to

whole network is bound by the laws presented before.

5.3 Load testing

Load testing is measuring network behaviour when it is under load. In case of this test it is
necessary to simulate load. To realize this task, 20 messages are continuously sent between random
nodes.

Test system sends m number of special messages from node A to node B and measures the
roundtrip time. Where A and node B nodes are the outermost vertices on the graph diameter.
Eventually time between sending first of m messages and receiving back the last message is used
as measure. Presented numbers of special messages (m) are used: 5, 10, 20, 30, 40, 50.

Chain topology chart (figure 5.6) shows linear response time rise with increasing number of
nodes. As chain topology is worst case scenario, it strongly dominates other topologies’ behaviour.

In spider web topology load test (figure 5.6), it can be noticed that roundtrip time is not
dependent upon order of the graph. This is correct behaviour due to to the fact, that in average
case at most one intermediate node is required to connect pair of nodes. In consequence response

time is more less constant.

—e— 5 messages —l— 10 messages —@— 20 messages
—#— 30 messages —— 40 messages - -@- - 50 messages

I I I I I I I I I I
100 |- 2
80 - :
<
£ 60 i
3
=}
2
£ 40 .
~
20 1 8
O, —
| | | | | | | | | |

5 10 15 20 25 30 35 40 45 50
Nodes count

Figure 5.6: Load test in chain network

64

Response time

Response time

—e— 5 messages —— 10 messages —@— 20 messages
—*— 30 messages —— 40 messages - -@- - 50 messages

Performance evaluation

S
6F T T T T T T T T T T 7]
/._ i - S~

5 ¢ T e —-rm—" ® —
41 .
3| .
2L .

./o\f//o\.\.
1 .

" 5 s —®&—

*— o o e
0 | | | | | | | | | | |

5 10 15 20 25 30 35 40 45 50

Nodes count
Figure 5.7: Load test in spider network
—e— 5 messages —— 10 messages —@— 20 messages
S —*— 30 messages —— 40 messages - -@- - 50 messages

18 T T T T T T T T T T o
16 - y
14 5
12 | 5
10 - y
8| .
6| .
4 .
21 .
0l .

I I I I I I I I I I

5 10 15 20 25 30 35 40 45
Nodes count

Figure 5.8: Load test in sparse random network

50

5.4. Spike testing 65

—e— 5 messages —m— 10 messages —@— 15 messages
—+— 20 messages —— 30 messages

50 F T T T T T T T T T T B

30

20

Response time

10

| | | | | | | | | |

5 10 15 20 25 30 35 40 45 50
Nodes count

Figure 5.9: Spike test to random node on chain network

Results for random sparse graph (figure 5.8) are the most interesting as this topology reflects
real world situations. It can be seen, that the curves rise a peak at 30 nodes — this phenomenon is
closely correlated with graph diameter. The graph diameter grows with the order of graph, until
some threshold number of nodes is reached, where the diameter starts decreasing. This is a result

of the chosen graph generation method.

5.4 Spike testing

Spike testing is measuring system response when system load suddenly increased.

Two useful varieties of this test were performed:
e messages are sent from each node to other randomly chosen node (figures 5.9, 5.10, 5.11),
e messages are sent from each node to their furthest node (figures 5.12, 5.13, 5.14).

It should be noticed that transfers occur concurrently, that is each node starts sending m
messages independently in the same time, so in total m - n messages are transferred. Tests were
performed for following number m of messages: 5, 10, 15, 20, 30.

Measured roundtrip times are lower in comparison with load tests results, even though multiple
transfers occur in parallel. This is a consequence of a smaller number of messages circulating in
the network. Spider web graph still is leading network topology, no matter if transfers occur
between random or furthest nodes. Observed behaviour of network based on random sparse graph
is acceptable as roundtrip times are far better than values of chain network, which is a pessimistic

topology.

66

Response time

Response time

Performance evaluation

—e— 5 messages —— 10 messages —@— 15 messages
—*— 20 messages —— 30 messages

4 [T T T T T T T T T

3.5 |

o
o
T
|

0.5 [0’/’\‘_/3 P ®

Nodes count

Figure 5.10: Spike test to random node on spider network

—e— 5 messages —l— 10 messages —@— 15 messages
—#— 20 messages —— 30 messages

Nodes count

Figure 5.11: Spike test to random node on random network

5.4. Spike testing

60

50

40

30

Response time

20

10

3.5

2.5

Response time

1.5

0.5

—e— 5 messages —M— 10 messages —@— 15 messages
—+— 20 messages —— 30 messages

T T T T T T T T T T

U"*
[a—y
(a=)
—
ot
[N}
o
[N}
ot
W
o
(%)
ot
W
o
>
ot
[$38
(an)

Nodes count

Figure 5.12: Spike test to furthest node on chain network

—e— 5 messages —— 10 messages —@— 15 messages
—*— 20 messages —— 30 messages

T T T T T T T T T T

Nodes count

Figure 5.13: Spike test to furthest node on spider network

67

68 Performance evaluation

—e— 5 messages —— 10 messages —@— 15 messages
—+— 20 messages —— 30 messages

T T T T T T T T T T

10 - n

Response time

U"*
—_
o
—
ot
[\)
o
[N}
ot
w
o
w
ot
S
(@)
S
ot
ot
(@)

Nodes count

Figure 5.14: Spike test to furthest node on random network

Conclusively, it can be noted that concurrent messages in network do not cause unpredictable

behaviour.

5.5 Harsh environment testing

Harsh environment is defined as network, where randomly occurring failures of nodes or retrans-
missions can happen. In real life situation network effective topology can change as a result of bad
weather, power failures or interferences.

With simulator implemented in the thesis it is possible to mimic such environment. Therefore
it is possible to test protocols and their implementation easily in controlled conditions.

The harsh environment test is based on load test, however different environment is assumed:
a) constant 50% probability of retransmission on every edge (figure 5.15),
b) constant 75% probability of retransmission on every edge (figure 5.16),

c) 40% probability of retransmission on every edge 100ms after start (figure 5.17).

As harsh environment test is closely related to real world situation, tests were conducted only
on random sparse graphs. Known number m of messages (where m is 5, 10, 15, 20) are sent from
random node A to its furthest node and roundtrip time is measured. Time required to receive
back every sent message is used as measure.

Harsh environment testing is fundamental in estimating protocol’s stability in prone to crashes

real world environment.

5.5. Harsh environment testing

—e— 5 messages —M— 10 messages —@— 15 messages
—~— 20 messages

T T T T T T T T T

Response time
— — —
o~ o o o o N
I I I I I I
| | | | | |

[=

10 15 20 25 30 35 40 45 5
Nodes count

o

Figure 5.15: Harsh environment testing with 50% probability of retransmission

—e— 5 messages —— 10 messages —@— 15 messages
—*— 20 messages

T T T T T T T T T

30 -

Response time
= — DO [\
ot (e ot [en) ot
I I I I I
| | | | |

U"*
—
an}
—_
Ut
[\~
jan)

25 30 35 40 45 5
Nodes count

o

Figure 5.16: Harsh environment testing with 75% probability of retransmission

69

70 Performance evaluation

—e— 5 messages —— 10 messages —@— 15 messages
—— 20 messages

14+ =

Response time
= —
o~ o o o)
[[[[[
| | | | |

U"*
—_
o
—
ot
[\)
o
[N}
ot
w
o
w
ot
W
(e
=~
S8
Ut
(e

Nodes count

Figure 5.17: Harsh environment testing with 40% probability of retransmission 100ms after start

In presented charts similar peak as in load tests can be noticed, however its source is the
same as previously described. In comparison with load tests 5.8, measured roundtrip times have
increased considerably, yet still shapes of the curves are comparable. Time increase results from
packet retransmissions required to ensure the delivery (during the test no undelivered messages
were found). Correct protocols behaviour can be observed, even when environment parameters

change in time, as in figure 5.17.

5.6 Summary

Performed tests provide sufficient information about the quality of protocols and their implementa-
tion. Tests confirm the protocol’s ability to be scalable in context of the order of graph and network
diameter. It can be noticed that computation time is minor part compared with transmission time,
especially when data rate is 24Kbps.

In fact, the benchmark confirmed that designed protocols are adequate for use in real world
situations. Tests based on random sparse graph topology were useful in prediction of behaviour
in physical world. Topology can be discovered in satisfactory time. Messages can be transmitted
effectively, even when under constant load. Moreover network can adapt to changing environment,

as it makes use of redundant links in case of other link failures.

Chapter 6

Conclusions

In this thesis we provided the concept of brand new communication protocols for self organizing
multi-hop long distance ad hoc networks. As part of the design process, it was proved that these
protocols have No creation and Stubborn delivery properties. We also proved that having these
two properties results in protocols correctness and implementing Stubborn Point to Point links
interface.

Furthermore, sample implementation of designed protocols with example applications, such
as echo, temperature reading and console is provided. Also example hardware platform based on
XBeePro-868 and RaspberryPi is set up. As there was limited number of devices, network simulator
that allows to simulate various network topologies and environment conditions was developed for
the purposes of tests.

Various performance tests were conducted using this simulator. Load tests, spike tests and
harsh environment tests shown, that scalability of designed protocols depends on size and topology
of the network and matches performance expectations. Furthermore, harsh tests also shown ability
of protocols to self-organize/reorganize while reliability of edges change.

In addition to conducted tests, provided implementation in connection with example applica-

tions and hardware setup shown that designed protocols can be used in real applications.

6.1 Comparing to existing solutions

Comparing to existing solutions, such as cellular network, ad hoc networks that use designed
protocols have many advantages. Firstly, cellular network is not available everywhere, especially
away from cities and roads. It is very important in case of measuring time during sport events.
Triathlons, for example, can take place away from city and cellular network range. Thanks to the
fact, that designed protocols implement multi-hop ad hoc network, large area may fall within a
range of the network. And because range of single XBeePro-868 devices with proper antenna is
up to 40 kilometers, check point gates that measures time does not have to be close to each other.

Joining new device to the existing network is very simple in provided implementation and is
not more complex than in cellular networks. To connect the device to the network, turning the
device on and inputting unique address is sufficient. Because designed protocols implement self
organizing ad hoc network, device discovers network topology by itself. Furthermore, thanks to
self-organizing property, network is able to react and reorganize if any temporary links disturbances
occur.

Another advantage, comparing to cellular network is lack of data transfer charge. Cellular

network operators charge for even small data transfer, while sending data through ad hoc network

71

72 Conclusions

is free if proper bandwidth is used.
The biggest advantage of provided solution is reliability. Failure of one device does not cause
failure of whole network. In cellular, failure of base station can cause unavailability of network on

large area.

6.2 Further research

Although the goal of this thesis has been accomplished, there is couple directions in which further

research can follow:

1. As mentioned above, joining to the network requires setting unique address for each device.
Automatic address configuration protocol is worth of investigation for making joining process

even simpler.

2. Greater ensurance of message delivery can be investigated. Provided solution tries to ensure,
that message will be delivered to destination node, but there is still no certainty about this.

Increasing delivery ensurance is worth of researching.

3. Because of number of available XBeePro-868 devices was limited, performance evaluation
was conducted using simulator. Conducting complex tests with usage of physical devices is

worth of investigation.

Appendix A

Performance evaluation dataset

Table A.1: Topology discovery time (time in ms)

Topology type

Nodes random spider chain
5 183.83 133.89 182.05
10 380.59 261.67 446.28
20 575.14 359.77 878.22
30 665.37 460.84 1 408.42
40 687.04 554.67 1 862.36
50 717.91 590.51 2 406.63

Table A.2: Load test in chain network (time in ms)

Messages count

Nodes 5 10 20 30 40 50
5 77491 157078 338316 505223 6759.78 8 038.79
10 1636.25 3 789.29 6 375.33 10 678.00 12 537.07 21 407.66
20 3 455.85 7121.86 15 662.50 23 170.68 32 196.94 38 802.32
30 5557.82 12161.15 24 834.30 37 743.08 52 264.37 55 606.29
40 7291.13 14 987.34 33 006.21 54 017.31 59 454.87 79 383.53
50 9955.75 18 727.36 40 775.20 64 636.29 85 388.45 96 762.51
Table A.3: Load test in spider network (time in ms)
Messages count
Nodes 5 10 20 30 40 50

5 449.08 879.30 1673.71 2465.54 3403.05 4 621.36

10 702.91 1286.19 2 583.22 4 156.72 5 119.25 5 628.70

20 1335.83 2443.32 5 698.82 8 496.59 11 644.52 14 343.81

30 208596 366397 776244 11470.17 15007.17 16 854.41

40 1290.56 1976.94 4811.29 730415 973535 11 902.04

50 926.00 1997.19 3794.13 6189.43 7213.05 11 435.77

73

Performance evaluation dataset

Table A.4: Load test in sparse random network (time in ms)

Messages count
Nodes 5 10 20 30 40 50

5 464.65 801.40 169852 291597 3756.20 5 045.64
10 416.51 847.98 1736.56 2 420.67 3661.56 5 548.96
20 41174 79775 1581.62 3 144.31 394215 5 638.12
30 371.04 837.08 1743.69 2529.69 4429.35 4977.77
40 482.86 870.82 1682.84 2702.47 3254.15 4 853.75
50 424.34 764.85 1609.20 249820 4077.27 4 954.96

Table A.5: Spike test to random node on chain network (time in ms)

Messages count
Nodes % 10 15 20 30

5 470.53 1902.76 157232 258791 2 966.90
10 216.00 245997 5049.13 285897 1 808.64
20 366192 5439.98 3459.62 1061.80 1 739.96
30 1137.80 10613.00 9296.79 14 137.83 37 369.08
40 5856.01 15 386.77 25425.83 17 319.04 40 030.62
50 1932.07 17 596.21 10 402.50 45 859.91 20 765.54

Table A.6: Spike test to random node on spider network (time in ms)

Messages count
Nodes 5 10 15 20 30

5 420.88 992.33 1537.02 1965.11 3 242.56
10 452.89 913.76 1380.87 1872.89 3 301.98
20 382.23 778.21 1370.06 2 108.60 3 398.44
30 416.91 806.74 1477.04 1933.06 3 028.07
40 426.21 861.81 1359.06 2 030.23 3 715.26
50 438.39 856.36 1112.72 190142 3 180.94

Table A.7: Spike test to random node on random network (time in ms)

Messages count
Nodes 5 10 15 20 30

5 435.07 1019.82 1611.12 2439.25 6 110.96
10 464.72 139240 2229.32 2555.95 5 995.88
20 1 271.66 877.52 1685.63 3559.32 6 190.59
30 1193.38 4017.76 2991.32 4547.24 6 206.21
40 1089.23 2698.51 3054.69 4957.76 8 480.96
50 112325 1491.02 3780.12 4533.02 8 976.86

Table A.8: Spike test to furthest node on chain network (time in ms)

Messages count
Nodes 5 10 15 20 30

5 882.563 1859.55 2728.08 3903.42 5 908.81
10 1834.87 4058.08 6149.36 8 369.64 12 778.78
20 4131.86 7 848.51 11923.99 17 219.20 28 382.35
30 5897.06 11173.98 19 357.47 27 305.17 45 217.16
40 8644.62 17 244.29 26 337.81 41 145.86 57 767.44
50 994238 20 006.18 32 131.77 48 093.84 63 375.59

Performance evaluation dataset 75

Table A.9: Spike test to furthest node on spider network (time in ms)

Messages count
Nodes 5 10 15 20 30

5 42894 835.11 1348.06 1778.93 3 044.48
10 453.19 878.13 144095 1976.24 2 926.91
20 444.22 944.12 1 465.98 1870.90 3 104.64
30 423.26 969.55 1452.84 1975.75 3435.17
40 424.99 915.58 1272.10 2 048.87 3 212.02
50 445.57 916.48 1470.66 2 206.34 3173.43

Table A.10: Spike test to furthest node on random network (time in ms)

Messages count
Nodes 5 10 15 20 30

5 485.96 954.92 154593 2408.73 5 619.27
10 682.99 1420.72 2360.47 3797.08 8 483.34
20 1816.46 3 265.55 5 234.71 8 324.88 18 406.30
30 1940.31 4 346.74 6 945.03 9 372.48 22 200.96
40 1284.77 3059.96 4399.58 6512.52 15 309.61
50 1101.56 2300.72 3811.33 621549 13671.11

Table A.11: Harsh environment testing with 50% probability of retransmission (time in ms)

Messages count
Nodes 5 10 15 20

5 728.04 1428.13 2123.05 291348
10 1154.69 2 262.72 3 447.43 4 551.22
20 2897.69 5819.81 8570.71 11 812.35
30 371279 771222 11479.36 15 124.80
40 2411.70 4969.35 753547 9 893.62
50 1979.51 410648 5867.48 785198

Table A.12: Harsh environment testing with 75% probability of retransmission (time in ms)

Messages count
Nodes 5 10 15 20

5 869.47 1773.25 2629.32 3 443.92
10 154850 3 118.16 4593.50 6 251.12
20 5 316.66 10 241.07 15 432.29 20 242.58
30 7300.23 14686.32 21966.39 29 194.77
40 4093.62 8 334.08 12 505.87 16 620.05
50 322785 6487.17 959544 12 830.99

Table A.13: Harsh environment testing with 40% probability of retransmission 100ms after start
(time in ms)

Messages count
Nodes 5 10 15 20

5 677.81 137094 2068.59 2 841.22
10 1046.37 2100.59 3218.27 4 286.53
20 2551.89 5127.02 7 756.25 10 436.26
30 3289.39 6650.91 10 043.47 13 593.55
40 2 146.43 4330.82 658547 8 566.67
50 1824.53 355547 5501.65 7 274.88

Bibliography

[ADSS6]

[Asl15]

[Bar9g]

[BRG99)]

[CGR11]

Bowen Alpern, Alan J Demers, and Fred B Schneider. Safety without stuttering. Information
Processing Letters, 23(4):177-180, 1986.

Aslak Hellesoy and Cucumber developers team. Cucumber — making bdd fun. [on-line]
http://cukes.info, 2015.

Michael Barbehenn. A note on the complexity of dijkstra’s algorithm for graphs with weighted
vertices. IEEE transactions on computers, 47(2):263-263, 1998.

Meenakshi Bansal, Rachna Rajput, and Gaurav Gupta. Mobile ad hoc networking (MANET):

Routing protocol performance issues and evaluation considerations. The Internet Society, 1999.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to reliable and secure

distributed programming. Springer, 2011.

[CMPCO04] Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, and Gianpaolo Cugola. Epidemic

[Dic11]

[Diglla]

[Digl1b]

[Digl4a]

[Digl4b]

[Digl5]

[Dij59]

[DRY1]

algorithms for reliable content-based publish-subscribe: An evaluation. In Distributed
Computing Systems, 200/. Proceedings. 24th International Conference on, pages 552-561.
IEEE, 2004.

American Heritage Dictionaries. The American Heritage Dictionary of the English Language,
Fifth Edition. Houghton Mifflin Harcourt Trade, 2011.

Digi International Inc. Xbee-pro 868 datasheet. [on-line]
http://www.digi.com/pdf/ds_xbeepro868.pdf, 2011.

Digi International Inc. Xbib-u-dev reference guide. [on-line]

http://ftpl.digi.com/support/documentation/xbibudev_referenceguide.pdf, 2011.

Digi International Inc. Xbee rf modules - digi international. [on-line] http://www.digi.com/
products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/,
2014.

Digi International Inc. Xbee®)/xbee-pro®868 rf modules. [on-line]
http://ftpl.digi.com/support/documentation/90001020_E.pdf, 2014.

Digi International Inc. About digi international. [on-line] http://www.digi.com/aboutus/,
2015.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269-271, 1959.

Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced Encryption
Standard. Journal of Cryptology, 4(1):3-72, 1991.

[EFGKO03] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The

many faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114-131, 2003.

7

http://cukes.info
http://www.digi.com/pdf/ds_xbeepro868.pdf
http://ftp1.digi.com/support/documentation/xbibudev_referenceguide.pdf
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/
http://ftp1.digi.com/support/documentation/90001020_E.pdf
http://www.digi.com/aboutus/

78 Bibliography

[Eur09] European Union Parliament. Directive of the european parliament and of the council
amending council directive 87/372/eec on the frequency bands to be reserved for the
coordinated introduction of public pan-european cellular digital land-based mobile
communications in the community. [on-line] http://www.europarl.europa.eu/sides/getDoc.
do?pubRef=-//EP//TEXT+REPORT+A6-2009-0276+0+D0OC+XML+V0//EN, 2009.

[Eurll] European Telecommunications Standards Institute. Electromagnetic compatibility and radio
spectrum matters (erm); radio frequency identification equipment operating in the band 865
mhz to 868 mhz with power levels up to 2 w;. [on-line] http://www.etsi.org/deliver/etsi_
en/302200_302299/30220801/01.04.01_40/en_30220801v0104010.pdf, 2011.

[Facl5] Antenna Factor. Ant-868-cw-hwr-rps datasheet - specifications: Frequency: 868mhz (853mhz -
883mbhz). [on-line]
http://www.digchip.com/datasheets/parts/datasheet/1359/ANT-868-CW-HWR-RPS. php,
2015.

[Gil59] Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, pages 1141-1144,
1959.

[Gool5] Google developers team. googletest, google c++ testing framework. [on-line]
https://code.google.com/p/googletest/wiki/Primer, 2015.

[HBCO1] Jean-Pierre Hubaux, Levente Buttydn, and Srdan Capkun. The quest for security in mobile ad
hoc networks. In Proceedings of the 2nd ACM international symposium on Mobile ad hoc
networking & computing, pages 146-155. ACM, 2001.

[JJVO8] Jorma Jormakka, Henryka Jormakka, and Janne Véare. A lightweight management system for
a military ad hoc network. In Information Networking. Towards Ubiquitous Networking and

Services, pages 533—-543. Springer, 2008.

[JS03] Jangeun Jun and Mihail L Sichitiu. The nominal capacity of wireless mesh networks. Wireless
Communications, IEEE, 10(5):8-14, 2003.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs. Software Engineering,
IEEE Transactions on, (2):125-143, 1977.

[LKO1] Hyojun Lim and Chongkwon Kim. Flooding in wireless ad hoc networks. Computer
Communications, 24(3):353-363, 2001.

[Lonl4] Roy Longbottom. Roy longbottom’s raspberry pi benchmarks. [on-line]
http://www.roylongbottom.org.uk/Raspberry’20Pi%20Benchmarks.htm, 2014.

[Per08] Charles E Perkins. Ad hoc networking. Addison-Wesley Professional, 2008.

[PM14] R. Pressman and B. Maxim. Software Engineering: A Practitioner’s Approach. McGraw-Hill
Education, 2014.

[Poo00] Robert D Poor. Self-organizing network, February 22 2000. US Patent 6,028,857.

[Rasl5] Raspberry Pi Foundation. What is a raspberry pi? [on-line]
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/, 2015.

[Red15] Redis developers team. Pub/sub redis. [on-line] http://redis.io/topics/pubsub, 2015.

[RTB*13] Daniel G Reina, Sergio L Toral, Federico Barrero, Nik Bessis, and Eleana Asimakopoulou.
The Role of Ad Hoc Networks in the Internet of Things: A Case Scenario for Smart
Environments. In Internet of Things and Inter-cooperative Computational Technologies for

Collective Intelligence, pages 89—113. Springer, 2013.

[Rubl13] Ruby development team. pack (array) - apidock. [on-line]
http://apidock.com/ruby/Array/pack, 2013.

http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+REPORT+A6-2009-0276+0+DOC+XML+V0//EN
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+REPORT+A6-2009-0276+0+DOC+XML+V0//EN
http://www.etsi.org/deliver/etsi_en/302200_302299/30220801/01.04.01_40/en_30220801v010401o.pdf
http://www.etsi.org/deliver/etsi_en/302200_302299/30220801/01.04.01_40/en_30220801v010401o.pdf
http://www.digchip.com/datasheets/parts/datasheet/1359/ANT-868-CW-HWR-RPS.php
https://code.google.com/p/googletest/wiki/Primer
http://www.roylongbottom.org.uk/Raspberry%20Pi%20Benchmarks.htm
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/
http://redis.io/topics/pubsub
http://apidock.com/ruby/Array/pack

79

[SNS03] Keng Siau, Fiona Nah, and Hong Sheng. Values of mobile applications to end-users. Furopean
Research Consortium for Informatics and Mathematics (ERCIM) News, 54:50-1, 2003.

Spal3] SparkFun Electronics. Sparkfun xbee explorer dongle - wrl-11697 - sparkfun electronics.
g
[on-line] https://www.sparkfun.com/products/11697, 2013.

[SS83] Richard D Schlichting and Fred B Schneider. Fail-stop processors: an approach to designing
fault-tolerant computing systems. ACM Transactions on Computer Systems (TOCS),
1(3):222-238, 1983.

[Sub06] B. M. Subraya. Integrated Approach to Web Performance Testing: A Practitioner’s Guide. 1GI
Global, 2006.

[Tij12] Henk Tijms. Understanding probability. Cambridge University Press, 2012.
[UH12] Eben Upton and Gareth Halfacree. Meet the Raspberry Pi. John Wiley & Sons, 2012.

[VDKVO00] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated
bibliography. Sigplan Notices, 35(6):26-36, 2000.

[Wan06] Roy Want. An introduction to rfid technology. Pervasive Computing, IEEE, 5(1):25-33, 2006.
[YAMO6] YAML.org. Yaml ain’t markup language. [on-line] http://www.yaml.org/refcard.html, 2006.

[Yel3] W. Ye. Instant Cucumber BDD How-to. Packt Publishing, 2013.

https://www.sparkfun.com/products/11697
http://www.yaml.org/refcard.html

© 2015 Amadeusz Juskowiak, Tomasz Kuczma, Mateusz Rybarski, Maciej Zurad

Poznan University of Technology
Faculty of Computer Science
Institute of Computer Science

Typeset using INTEX in Computer Modern.

BibTEX:
Gmastersthesis{ key,

author = "Amadeusz Juskowiak \and Tomasz Kuczma \and Mateusz Rybarski \and Maciej Zurad",

title = "{Design and implementation of communication protocols for self-organizing multi-hop
ad hoc networks using XBeePro-868 platform}",

school = "Poznan University of Technology",

address = "Pozna{\’n}, Poland",
year = "2015",

	1 Introduction
	2 Project concept
	2.1 Basis of operation
	2.1.1 Data types, variables, operations and events
	2.1.2 Network topology discovery
	2.1.3 Network topology maintenance
	2.1.4 Packet routing
	2.1.5 Ensuring delivery

	2.2 Proof of correctness
	2.2.1 Assumptions
	2.2.2 Special cases
	2.2.3 Proving correctness of the protocol

	3 Project
	3.1 Infrastructure
	3.1.1 XBeePro-868 radio module
	3.1.2 Control system

	3.2 Software implementation
	3.2.1 Building process
	3.2.2 Data structures
	3.2.3 Driver
	3.2.4 Dispatcher
	3.2.5 Router
	3.2.6 Simulator

	3.3 Testing process
	3.3.1 Unit testing
	3.3.2 Behaviour testing

	4 Sample applications
	4.1 Echo
	4.2 Temperature reading
	4.3 Console
	4.4 Possible areas of usage
	4.4.1 Sport timing
	4.4.2 Sensoric networks

	5 Performance evaluation
	5.1 Methodology
	5.1.1 Tests environment
	5.1.2 Results visualization

	5.2 Topology discovery
	5.3 Load testing
	5.4 Spike testing
	5.5 Harsh environment testing
	5.6 Summary

	6 Conclusions
	6.1 Comparing to existing solutions
	6.2 Further research

	A Performance evaluation dataset
	Bibliography

